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BUNDLE SPACES FOR APPROXIMATE FIBRATIONS

MEE-KWANG KANG

1. Introduction

Approximate fibration is a proper map having an approximate ho-
motopy lifting property for all spaces, which is introduced by Coram
and Duvall [1]. It is a generalization of Hurewicz fibration but it has
very useful, analogous properties to the fibration such as the existence
of homotopy exact sequence. Owing to this advantage, the problem
that under what condition a proper map ¢ : M — B is an approximate
fibration has been an interesting issue [2,3,4,5,7,11].

In this paper, we are going to suggest closed manifolds N with bun-
dle structures which force maps ¢ : M — B to be approximate fibra-
tions, when M is an (n + 2)-manifold and each ¢ b has the homotopy
type of V.

A proper map ¢ : M — B between locally compact ANR’s is called
an epprozimate fibration if it has the following approximate homotopy
lifting property: given an open cover ¢ of B, an arbitrary space X, and
twomaps h: X — M and F': X x I — B such that ¢ o h = Fp, there
exists a map H : X x I — M such that Hy = » and g o H is e-close to
F.

If g : M — B is an approximate fibration to a path connected space
B, then point inverses are absolute neighborhood retracts and pair-
wise homotopy equivalent. A branch of the research on approximate
fibrations is to find out conditions for the fibers of p in the collection
mentioned above. We assume all spaces are locally compact, metrizable
ANR’s, and all manifolds are finite dimensional, orientable, connected
and boundaryless. A manifold M is said to be closed if M 1s compact.
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A closed n-manifold N is called a codimension k fibrator if, whenever
g : M — B is a proper map from an arbitrary (n + k)-manifold M to
a finite dimensional space B such that each point preimage ¢~ 1(8) is
homotopic equivalent to N, ¢ : M — B is an approximate fibration.

All closed aspherical n-manifolds N for which my (V) is finitely gen-
erated are codimension 1-fibrators. Actually, the information about
codimension 1-fibrator is almost known. All surfaces except those of
Euler characteristic zero and their product are codimension 2-fibrators
[4,11). Every (k — 1)-connected closed manifold N is a codimension
k-fibrator but n-sphere S™ is not a codimension (n 4 1)-fibrator.

The degree of a map R : N — N, where IV is a closed manifold,
is the nonnegative integer d such that the induced endomorphism of
Ha(N;Z) = Z amounts to multiplication by d, up to sign. Note that
a degree one map R : N — N induces homology isomorphisms R, :
H;(N) —» H,(N) for all integer ¢ > 0 {16] and the epimorphism Ry :
1 (N) — w1 (V) [10].

The continuity set C of ¢ : M — B consists of those points ¢ €
B such that, under any retraction R : ¢7'U — ¢ !¢ defined over a
neighborhood U C B of ¢, ¢ has another neighborhood V, C U such
that R|,-13 : ¢~ — g~ 'c is a degree one map for all b € V.. Coram
and Duvall [3] showed that the continuity set of ¢ is a dense, open
subset of B

2. Hopfian manifolds with bundle structure

A closed manifold N is called Hopfian if every degree one map
N — N which induces a my-automorphism is a homotopy equivalence.
Davermann {5] proved that if N is a closed Hopfian manifold then an N-
like decomposition map is an approximate fibration on the continuity
set. So whether a closed manifold N is Hopfian is a part of a significant
problem in efficiently identifying codimension k-fibrators. We mainly
investigate manifolds to be Hopfian manifolds in this section.

A fiber bundle (N, E, F,p) consists of the bundle space N, a base
space E, the fiber F', and a bundle projection p : N — E such that there
exists an open covering U of E and, for each U € U, a homeomorphism
Yy : U x F ~ p~Y(U) such that the composite

¥
UxF—p Y (U) DU
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is the projection to the first factor. We denote the bundle space N by
Ex F in the sense of comparison to product space F x F.

LEMMAZ2.1 [19]. Let R: M, — M; be a map of closed n-manifolds
which induces an isomorphism in the fundamental groups. Suppose
that m,(M;) and m,(My) are trivial for 1 < i <n—1. R is a homotopy
equivalence if and only if the degree of R is £1. In particular, an
aspherical closed manifold is a Hopfian manifold.

THEOREM 2.2. If F| and F, are aspherical closed manifolds then
the bundle Fy X F, is a Hopfian manifold.

Proof. Let p: FyxFy — Fy be the bundle projection. Since the base
space F) is a compact manifold, p is a fibration and so there exists the
homotopy exact sequence between three objects;

PO Wn(FZ) — Wn(F;[;(Fz) —r Wn(Fl) — 7!',1_1(F2) -

From the fact that Fi and F; are aspherical, the above homotopy
sequence provides the information that Fy X F; is also aspherical. By
Lemma 2.1, Fy X F, is a Hopfian manifold.

A group H is called hopfian if every epimorphism ¥ : H — H
is necessarily an isomorphism. Sometimes, the Hopfian property of
fundamental group of a closed manifold makes N a Hopfian manifold.
For low dimensional manifold, Hausmann proved the following useful
result;

LEMMA 2.3 [8]. A closed, orientable n-manifold N is a Hopfian
manifold provided n < 4 and n{(N) is Hopfian.

THEOREM 2.4. Let Fy and F, be closed surfaces with nonzero Euler
characteristics. If Fy or F5 is aspherical, then the bundle N over F;
with a fiber F, is a Hopfian manifold.

Proof. If both F; and F5 are aspherical, by Theorem 2.2, we are
done. Otherwise, one of them is not aspherical, say F;. By the virtue
of the classification theorem for compact surface, it is homeomorphic
to a sphere S2. A bundle space N over 2-manifold having 2-manifold
as a fiber is a 4-manifold and thus it suffices to show that N has a
Hopfian fundamental group by the view of Lemma 2.3.
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Consider the following homotopy exact sequence

0 2 1o (Fy) — ma(N) 22 ma(Fy) s 71(F) —o 7 (N) = my(Fy) — 1

Since py is one to one and m(F) & my(S5?) & Z, 7y(N) is a free
group. From the fact that x3(Fy) = m3(N)® Im g and the subgroup
Im g of a free group =1(#2) is free, Im g must be a trivial group. It
ensures that ¢g : 7 (F3) — n;(N) is an isomorphism. On the other
hand, the fundamental group of an aspherical manifold is torsion free
and thus n;(F,) is a finitely generated free group, which implies that
it is hopfian. Therefore 7y (V) is a Hopfian group.

In [12], Im, Kang and Woo showed that a product S™ x F of an
n-sphere S*(n > 1) and a closed aspherical manifold F is a Hopfian
manifold. We are going to extend the result to the bundle space S® x F.

By a section of a bundle projection p : N — E we mean a continuous
map f : E — N such that po f(z) = z for each ¢ € E. Note that
every product space N = § x F is a bundle having sections, which are
just the graphs of maps ¥ — F.

THEOREM 2.5. Let N be a closed bundle S™x F over an n-sphere
S™ having an aspherical closed k(n > k > 2)-manifold F' as a fiber. If
there is a section f : S™ — N of the bundle prq;ectzon p: N — 8"
then N is a Hopfian manifold.

Proof. Let R: N — N be a degree one map inducing a 7;-isomorph-

ism and let B, and R4 be the induced endomorphisms by R on
homology groups H,(N) and hemotopy groups m,(V), respectively.

First, we show that pg : m(N) — 7,(S") is an isomorphism for
¢ > 1. Let p: N -5 S" be the bundle projection. Since the base
space S™ is a compact metric space, p is a fibration and there exists a
homotopy exact sequence as follows;

= m(F) s m(N) 25w (S™) o mees(F) o e

where 2 : ' — N is the inclusion. This sequence shows that py :
7, (N) — 7;(S™) is an isomorphism for ¢ > 2.

Next, we claim that R induces isomorphisms Ry : m,(N) — m,(N)
for all positive integer .
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In the case 1 < i < n, each 1-th homotopy group of N is a trivial
group and each Ry : 7,(N) — m,(N) is a trivial isomorphism.

For 1 = n, consider the homomorphism Ry : #.(N) — 7,(IN) on
the n-th homotopy groups. If f : §® — N is a section of p, po
f 5" — S” is the identity map and thus it induces identity maps
(pofle: Ho(S™) > Ho(S™) and (po fg : ®a(S™) — m,(S™). Hence,
Jf# : a(S™) — wa(N) is actually an inverse isomorphism of pg since
P# is an isomorphism. From the fact that (po f). = Pso fe = 1d, we
know that p. is an epimorphism.

On the other side, the inclusion map ¢ : F — N induces isomor-
phisms iy : m(F) — m(N) for ¢ < n — 1.— So Whitehead the-
orem guarantees that i, : H,(F) — H,(N) is an isomorphism for
1<i<n-1 Simcek <n-1, H(N) = HYN) = H¥F) >~ Z
and then p, : Ho(N} — H,(S") is an isomorphism by the hopfian
property of Z. Therefore f, is the inverse isomorphism of p,.

Consider the following commutative diagram;

Ry
(N} ———  ma(N)
f#% Jf’#
(poRef)
Ta(§7) —s ma(5™)
o J’Hurewicz map
(poRo f).
Hn(S™) ——— Ho(S™)

fu l '{p.

Ho(N) —s  Ho(N)

Since R is a degree one map, R, : Hy(N) — H,(N) is an isomor-
phism and so is (po Ro f). : Hp(S") — H(S™). Applying Whitehead
theorem for (n —1)-connected manifold S, it follows that (po Ro f)u :
Tn(S™) — 7p(S™) is an isomorphism. Thus Ry : ma(N) — 7,(N) is
an isomorphism.

Finally, let us prove that Ry : 7,(N)} — n,(N) are isomorphisms for
i >n+1. Since (poRo f): S® — S is a homology eqivalence and
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S™ is simply connected, Whitehead theorem certifies the isomorphic
property of (po Ro f)g : m(S") — n,(S"). Thus Ry : my(N) — mi(V)
is an isomorphism and N is a Hopfian manifold.

COROLLARY 2.6. Let N be a closed product bundle S™ x F' over an

n-sphere S™ having an aspherical closed k-manifold F' as a fiber. Then
N is a Hopfian manifold.

3. Bundle spaces for codimension 2-fibrators

Recall that if N is a closed Hopfian n-manifold then an N-like de-
composition map i8 an approximate fibration over its continuity set.
Thus, using Theorem 2.2, we easily obtain the following results.

THEOREM 3.1. If N is a closed bundle FyxF, for aspherical man-
ifolds Fy, and Fy and q : M — B is a proper map from an arbitrary
(n + k)-manifold M to a finite dimensional space B such that each
point preimage g~ (b) is homotopic equivalent to N, ¢: M — B is an
approximate fibration over its continuity set.

Theorem 3.1 holds for each of all closed manifold described in The-
orem 2.4 and 2.5, and Corollary 2.6.

In order for a Hopfian manifold N to be a codimension k-fibrator, N
must equip the condition that the continuity set is the whole base set.
The study on codimension 2-fibraters has many advantages compared
with the other codimension and is necessary in the meaning that every
codimension k-fibrator is a codimension (k — 1), moreover, at this time
all known non-fibrators having no sphere as a Cartesian factor fail in
codimension 2. In the case k = 2, the base space B is 2-manifold and
B\ C is locally finite in B [6], where C represents the continuty set of
g : M — B, and so we can localize to the situation which B is identical
to E? and ¢ is an approximate fibration over the complement of one
point b.

From now on, we investigate closed manifolds with bundle structure
to be codimension 2-fibrators. Call a finitely presented group H hy-
perhopfian if every endomorphism ¥ : H — H with ¥(H) normal and
H/¥(H) cyclic is an automorphism. Davermann showed that some
conditions about a closed manifolds force to extend the continuity sct
to the whole set B.
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LeMMA 3.2 [5]. All closed, Hopfian manifolds with hyperhopfian
fundamental group are codimension 2 fibrators.

LEMMA 3.3 [5). Every closed, Hopfian manifold with a Hopfian

fundamental group and nonzero Euler characteristic is a codimension
2 fibrator.

A group H is sald to be residually finite if for each ey # h € H,
there exists a finite group A and a homomeorphism ¢ : H — A such that
#(h) # ea. Each finitely generated, residually finite group is Hopfian
[15). Also, a residually finite property is preserved under a semidirect
product [13], that is, if H and K are residually finite groups then a
semidirect product of H by K is residually finite.

THEOREM 3.4. If each of Fy and F, is an aspherical closed manifold
with nonzero Euler characteristic and a residually finite fundamental
group, then the bundle Fy X F; is a codimension 2-fibrator.

Proof. A bundle projection over a closed manifold is a fibration
and hence x(FyxFy) = x(F1)x(F») # 0. From the homotopy exact
sequence of three objects described in the proof of Theorem 2.2, we can
see that the fundamental group of the aspherical manifold Fy X F can
be represented to be a semidirect product m (F2) x w(Fi) of 71 (Fz) and
w(Fy). Since i (Fy x Fy) is a finitely generated, residually finite group,
it is hopfian. By Lemma 3.3, F; X F} is a codimension 2-manifold.

COROLLARY 3.5. If N is a bundle over S* (n > 2) having as a
fiber a closed absolute retract manifold F', then 1t is a codimeng'on 2
fibrator. '

Proof. An absolute retract is contractible and so F' is aspherical.
Hence 5™ and F are compact metric spaces and thus the fiber V has
a cross-section {18).

THEOREM 3.6. I each of F| and F) is a closed surface with nonzero
Euler characteristic, then the bundle N over Fy with a fiber F, is a
codimension 2-fibrator.

Proof. Let p : N — Fj be a bundle projection and let us consider
the following homotopy sequence;
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S 1p(Fy) = m(N) 22 ma(Fy) > mi(Fy) — mi(N) — m(Fy) — 1

I both x(F1) and x(F2) are positive, Fy and F; are simply connected
spaces. From the above homotopy sequence, N is also simply connected
which is a codimension 2-fibrator [4]. Otherwise, either F; or Fj is
asperical. By Theorem 2.4, the bundle N is a Hopfian manifold with
hopfian fundamental group, which is a codimension 2-fibrator from
Lemma 3.3.

Combining Theorem 2.5 with Lemma 3.2 and Lemina 3.3, the fol-
lowing results are obtained.

THEOREM 3.7. If F be an aspherical closed manifold with nonzero
Euler characteristic, then the bundle S®XF having a section over n-
sphere S" is a codimension 2-fibrator.

THEOREM 3.8. If F is an aspherical closed manifold with hyper-
hopfian fundamental group then the bundle $S”xF having a section
over n-sphere S™ is a codimension 2-fibrator.
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