NOTES ON HADAMARD PRODUCT OF CERTAIN MEROMORPHIC FUNCTIONS

Sang Keun Lee and Shigeyoshi Owa

1. Introduction

Let \sum be the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{a_{0}}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \quad\left(a_{0}>0, a_{n} \geq 0\right) \tag{1.1}
\end{equation*}
$$

which are meromorphic in the punctured disk $D=\{z: 0<|z|<1\}$. A function $f(z) \in \sum$ is said to be meromorphic starlike of order α in D if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)<-\alpha \quad(z \in D) \tag{1.2}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by $\sum S_{0}^{*}(\alpha)$ the subclass of \sum consisting of all such functions. A functions $f(z)$ in \sum is said to be meromorphic convex of order α in D if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<-\alpha \quad(z \in D) \tag{1.3}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We also denote by $\sum K_{0}(\alpha)$ the subclass of \sum consisting of functions which are meromorphic convex of order α in D.

For functions $f_{j}(z)(\jmath=1,2)$ defined by

$$
\begin{equation*}
f_{3}(z)=\frac{a_{0, j}}{z}+\sum_{n=1}^{\infty} a_{n, j} z^{n} \quad\left(a_{0, j}>0, a_{n, j} \geq 0\right) \tag{1.4}
\end{equation*}
$$

Received Apr. 1, 1997.
The first author was supported in part by the Basic Science Research Institute Program, Ministry od Education, Korea, 1996, Project No. BSRI 96-1411.
we define the Hadamard product $f_{1} * f_{2}(z)$ by

$$
\begin{equation*}
f_{1} * f_{2}(z)=\frac{a_{0,1} a_{0,2}}{z}+\sum_{n=1}^{\infty} a_{n, 1} a_{n, 2} z^{n} . \tag{1.5}
\end{equation*}
$$

In view of the previous definitions by Owa [4, 5, 6] and Kumar [1, 2], Mogra [3] has introduced the following class.

Definition. A function $f(z) \in \sum$ is said to be a member of the class $\sum_{k}^{*}(\alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k}(n+\alpha) a_{n} \leq(1-\alpha) a_{0} \tag{1.6}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$ and $k(k \geq 0)$.
Remark 1. Note that $\sum_{0}^{*}(\alpha) \equiv \sum S_{0}^{*}(\alpha)$, and that $\sum_{k}^{*}(\alpha) \subset$ $\sum_{k-1}^{*}(\alpha) \subset \cdots \subset \sum_{2}^{*}(\alpha) \subset \sum K_{0}(\alpha) \subset \sum S_{0}^{*}(\alpha)$.

For the above class $\sum_{k}^{*}(\alpha)$, Mogra [3] has proved
Theorem A. For each $j=1,2, \cdots, m$, let the functions $f_{j}(z)$ belong to the class $\sum S_{0}^{*}\left(\alpha_{j}\right)$, respectively. Then, the Hadamard product $f_{1} * f_{2} * \cdots * f_{m}(z)$ belongs to the class $\sum_{m-1}^{*}\left(\alpha^{*}\right)$, where $\alpha^{*}=$ $\max _{1 \leq j \leq m}\left\{\alpha_{j}\right\}$.

Theorem B. For each $j=1,2, \cdots, m$, let the functions $f_{j}(z)$ belong to the class $\sum K_{0}\left(\alpha_{j}\right)$, respectively. Then, the Hadamard product $f_{1} * f_{2} * \cdots * f_{m}(z)$ belongs to the class $\sum_{2 m-1}^{*}\left(\alpha^{*}\right)$, where $\alpha^{*}=$ $\max _{1 \leq J \leq m}\left\{\alpha_{j}\right\}$.

Theorem C. For each $i=1,2, \cdots, m$, let the functions $f_{i}(z)$ belong to the class $\sum S_{0}^{*}\left(\alpha_{1}\right)$, respectively; and for each $j=1,2, \cdots, q$, let the functions $g_{j}(z)$ belong to the class $\sum K_{0}\left(\beta_{j}\right)$, respectively. Then, the Hadamard product $f_{1} * f_{2} * \cdots * f_{m} * g_{1} * g_{2} * \cdots * g_{q}(z)$ belongs to the class $\sum_{m+2 q+1}^{*}(\gamma)$, where $\gamma=\max _{\substack{1 \leq i \leq m \\ 1 \leq j \leq q}}\left\{\alpha_{i}, \beta_{j}\right\}$.

In this present paper, we prove the generalization theorems of the results by Mogra [3].

2. Generalization of theorems

We begin with the statement and the proof of our main result.
Theorem 1. If $f_{j}(z) \in \sum_{k}^{*},\left(\alpha_{j}\right)$ for each $j=1,2, \cdots, m$, then $f_{1} * f_{2} * \cdots * f_{m}(z) \in \sum_{k}^{*}(\alpha)$, where $k=\left(\sum_{\jmath=1}^{m} k_{j}\right)+m-1$ and $\alpha=\max _{1 \leq j \leq m}\left\{\alpha_{j}\right\}$.

Proof. It is sufficient to prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(n^{k}(n+\alpha) \prod_{j=1}^{m} a_{n, \jmath}\right) \leq(1-\alpha) \prod_{j=1}^{m} a_{0, j} . \tag{2.1}
\end{equation*}
$$

Note that for $f_{j}(z) \in \sum_{k,}^{*}\left(\alpha_{\jmath}\right)$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k_{2}}\left(n+\alpha_{j}\right) a_{n, j} \leq\left(1-\alpha_{j}\right) a_{0, j} \quad(j=1,2, \cdots, m) \tag{2.2}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{n, 3} \leq \frac{\left(1-\alpha_{j}\right) a_{0,3}}{n^{k_{j}}\left(n+\alpha_{j}\right)} \leq \frac{1}{n^{k,+1}} a_{0,3} \quad(j=1,2, \cdots, m) . \tag{2.3}
\end{equation*}
$$

Further, we may assume that $\alpha=\max _{1 \leq j \leq m}\left\{\alpha_{\jmath}\right\}=\alpha_{m}$. Then we see that

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left(n^{k}(n+\alpha) \prod_{\jmath=1}^{m} a_{n, j}\right) \\
\leq & \sum_{n=1}^{\infty}\left(n^{k}\left(n+\alpha_{m}\right)\left(\prod_{j=1}^{m-1} \frac{1}{n^{k_{j}+1}} a_{0, \jmath}\right) a_{n, m}\right) \\
= & \left(\prod_{j=1}^{m-1} a_{0, j}\right)\left(\sum_{n=1}^{\infty} n^{k_{m}}\left(n+\alpha_{m}\right) a_{n, m}\right) \tag{2.4}\\
\leq & \left(1-\alpha_{m}\right) \prod_{j=1}^{m} a_{0, j} \\
= & (1-\alpha) \prod_{j=1}^{m} a_{0, j} .
\end{align*}
$$

This completes the proof of theorem.

REMARK 2. Since $\sum_{0}^{*}(\alpha) \equiv \sum S_{0}^{*}(\alpha)$, letting $k_{j}=0(j=1,2, \cdots$, m) in Theorem 1, we have Theorem A by Mogra [3].

Remark 3. If we take $k_{j}=1(j=1,2, \cdots, m)$ in Theorem 1 , then $k=\left(\sum_{j=1}^{m} k_{j}\right)+m-1=2 m-1$. Therefore, taking $k_{j}=1(j=$ $1,2, \cdots, m)$, Theorem 1 leads to Theorem B by Mogra [3].

Corollary 1. If $f_{i}(z) \in \sum_{k_{i}}^{*}\left(\alpha_{i}\right)$ for each $i=1,2, \cdots, m$, and if $g_{j}(z) \in \sum_{k_{j}^{\prime}}^{*}\left(\beta_{j}\right)$ for each $j=1,2, \cdots, q$, then $f_{1} * f_{2} * \cdots * f_{m} * g_{1} *$ $g_{2} * \cdots * g_{q}(z) \in \sum_{k}^{*}(\gamma)$, where $k=\sum_{i=1}^{m} k_{i}+\sum_{j=1}^{q} k_{j}^{\prime}+m+q-1$ and $\gamma=\max _{\substack{1 \leq i \leq m \\ 1 \leq j \leq q}}\left\{\alpha_{i}, \beta_{j}\right\}$.

The proof of the corollary is clear from Theorem 1.
REMARK 4. If we take $k_{2}=0(\imath=1,2, \cdots, m)$ and $k_{j}^{\prime}=1(j=$ $1,2, \cdots, q$) in Corollary 1, then we have Theorem C by Mogra [3].

Next, we prove
THEOREM 2. If $f_{j}(z) \in \sum_{k}^{*}(\alpha)$ for all $j=1,2, \cdots, m$, then $f_{1} * f_{2} *$ $\cdots * f_{m}(z) \in \sum_{k+m-1}^{*}(\delta)$, where

$$
\begin{equation*}
\delta=\delta(m, \alpha, \beta)=(1+\alpha)^{m}-\beta, 0 \leq \alpha<1,1 \leq \beta \leq(1+\alpha)^{m} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\alpha)^{m}+(1+\alpha)^{m} \leq 1+\beta \tag{2.6}
\end{equation*}
$$

Proof. It follows from $f_{3}(z) \in \sum_{k}^{*}(\alpha)(j=1,2, \cdots, m)$, that

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k}(n+\alpha) a_{n, j} \leq(1-\alpha) a_{0, j} \quad(j=1,2, \cdots, m) \tag{2.7}
\end{equation*}
$$

From (2.7), we get

$$
\begin{equation*}
n^{k}(n+\alpha) a_{n, 3} \leq(1-\alpha) a_{0,3} \quad(j=1,2, \cdots, m) \tag{2.8}
\end{equation*}
$$

for all n. From (2.8), we obtain

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left(n^{k+m-1}(n+\delta) \prod_{j=1}^{m} a_{n, j}\right) \\
= & \sum_{n=1}^{\infty}\left(n^{k+m-1}\left(n+(1+\alpha)^{m}-\beta\right) \prod_{j=1}^{m} a_{n, \jmath}\right) \\
\leq & \sum_{n=1}^{\infty}\left(n^{k+m-1}(n+\alpha)^{m} \prod_{\jmath=1}^{m} a_{n, j}\right) \\
\leq & \sum_{n=1}^{\infty} n^{k}\left(n^{m-1}(n+\alpha)^{m-1} \prod_{j=1}^{m-1} a_{n, j}\right)(n+\alpha) a_{n, m} \\
\leq & \sum_{n=1}^{\infty} n^{k}\left(n^{m-1}\left(\frac{1-\alpha}{n^{k}}\right)^{m-1} \prod_{\jmath=1}^{m-1} a_{n, \jmath}\right)(n+\alpha) a_{n, m} \tag{2.9}\\
\leq & \sum_{n=1}^{\infty} n^{k}\left((1-\alpha)^{m-1} \prod_{j=1}^{m-1} a_{0, j}\right)(n+\alpha) a_{n, m} \\
\leq & (1-\alpha)^{m} \prod_{j=1}^{m} a_{0, j} \\
\leq & \left(1-\left((1+\alpha)^{m}-\beta\right)\right) \prod_{j=1}^{m} a_{0, j} \\
= & (1-\delta) \prod_{j=1}^{m} a_{0, j}
\end{align*}
$$

where

$$
(1-\alpha)^{m}+(1+\alpha)^{m} \leq 1+\beta, 0 \leq \alpha<1 \text { and } 1 \leq \beta \leq(1+\alpha)^{m} .
$$

This implies that $f_{1} * f_{2} * \cdots * f_{m}(z) \in \sum_{k+m-1}^{*}(\delta)$.
Taking $k=0$ in Theorem 2, we have

Corollary 2. If $f_{3}(z) \in \sum S_{0}^{*}(\alpha)$ for all $j=1,2, \cdots, m$, then $f_{1} * f_{2} * \cdots * f_{m}(z) \in \sum_{m-1}^{*}(\delta)$, where δ is given by (2.5), and α and β satisfy the condition in Theorem 2.

Further, letting $k:=1$ in Theorem 2, we have
Corollary 3. If $f_{3}(z) \in \sum K_{0}(\alpha)$ for all $j=1,2, \cdots, m$, then $f_{1} * f_{2} * \cdots * f_{m}(z) \in \sum_{m}^{*}(\delta)$, where δ is given by (2.5), and α and β satisfy the condition in Theorem 2.

References

1. V. Kumar, Hadamard product of certain starlike functions, J. Math. Anal. Appl. 110 (1985), 425-428.
2. V. Kumar, Quasıo-Hadamard product of certann unvalent fuctions, J. Math. Anal. Appl. 126 (1987), 70-77.
3. M. L. Mogra, Hadamard product of certain meromorphzc univalent functions, J. Math. Anal. Appl. 157 (1991), 10-16.
4. S. Owa, On the classes of unsvalent functions with negative coefficients, Math. Japon. 27 (1982), 409-416.
5. S. Owa, On the starlike functions of order α and type β, Math. Japon. 27 (1982), 723-735.
6. S. Owa, On the Hadamard products of univalent functıons, Tamkang J. Math. 14 (1983), 15-21.

Department of Mathematics
Gyeongsang N. University
Chinju 660-701, Korea
Department of Mathematics
Kinki university
Higashi-Osaka, Osaka 577, Japan

