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GENERALIZED VECTOR VARIATIONAL
INEQUALITIES AND GENERALIZED VECTOR
COMPLEMENTARITY PROBLEMS ON H-SPACES

SANG CHUL LEE AND SUK-JIN LEE

—1. Introduction and preliminaries

Recently, Giannessi [5] has introduced the vector variational inequal-
ity (in short , VVI) in finite-dimensional Euclidean spaces. Since then
Chen et al. {3, 4, 10, 12] have discussed and proved some existence the-
orems for vector variational inequalities and quasi-vector variational
inequalities in Banach spaces. In [6, 7], Lee et al. established the exis-
tence theorem for the solution of (VV I) for multifunctions in reflexive
Banach spaces.

On the other hand, classical complementarity problem has been con-
sidered as an equivalent form of varijational inequality. This problem
has wide-spread applications in economics and engineering together
with variational inequality. Inspired and motivated by the applica-
tions of (VVI), we introduce in this paper a more general form of the
(VVI) and vector complementarity problem (in short, VCP) corre-
sponding to geneal vector variational inequalities (in short, H-GVVI)
and general vector complementarity problem (in short, H-GVCP) on
H-spaces, for which we can obtain nonconvex extensions of {6, 7, §]
Our main purpose of this paper is to investigate some existence theo-
rems for the solutions of (H-GVVI) and (H-GVCP).

Let X and Y be two Banach spaces and D a nonempty closed convex
subset of X. Let T : X — 2XXY) be a multifunction, where L(X,Y)
is the space of all continuous linear operators from X into Y. Let
{C{(z): z € D} be a family of closed, pointed, and convex cones in Y’
such that int C(z) # @ for every z € D, where int denotes the interior
of a set.
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First we consider the following generalized vector variational in-
equality :

(GVVI) Find zp € D such that for each y € D, there exists an sg €
T(xo) satisfying (so,y —g(xa)) € —int C(zo), where {so,y) denotes the
evaluation sy aty and g : D — D a mapping.

When ¢ is an identity mapping, (GV V) reduces to the following

generalized vector variational inequality (GVVI) considered by Lee
et al. [7]:

(GVVI) Find 2o € D such that for each y € D, there exists an
S0 € T(zq) satisfying (so,y — zo) & —int C(zg).

When T is an operator from X into L(X,Y) and ¢ is an identity
mapping, (GV V) reduces to the following vector variational inequality
(VVI) considered by Chen [3]:

(VVI) Find xo € D such that for each y € D, (T(zg),y — %o} ¢&
—int C(xo)

When for every z € D, C(z) = C, where C is a closed, pointed,
and convex cones in Y with int C # @, and ¢ is identity mapping,
(GVVI)reduces to the following generalized vector variational inequal-
ity (GVVI)" considerd by Lee et al. [6], and also (VVI) reduces to
the following (VVI) considered by Chen et al. [4}, Yang [12]:

(GVVI)' Find 2o € D such that for each y € D, there exists an
50, € T(zo) such that (sp,y — zo) & —int C.

(VVI)' Find zo € D such that for each y € D, {T(zq),y — zo) ¢
—nt C.

When ¥ = R, X = R*, C(z) = Ry, then (VVI) collapses to the
following classical scalar variational inequality ( in short, VI):

(VI) Find o € D such that {f(zo),y — z¢) > 0 for ally € D C R",
where f: D — R™ is o given operator.

Now we recall some definitions and notations needed in this paper.
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DEFINITION 1.1 [1]. An H-space is a pair (X,{T’4}) , where X is a
topological space, and {I' 4} is a given family of nonempty contractible
subsets of X, indexed by the finite subset of X such that A C B implies
FPaCTpg.

DEFINITION 1.2 {1]. Let (X, {I"'4}) be an H-space, D be a nonemp-
ty subset of X.

(1) D is said to be H-convex if, for every finite subset A C D, it
follows that I'y C D.

(2) D is said to be weakly H-convex if, for every finite subset
A C D, T4 N D is nonempty and contractible.

(3) A subset K C X is said to be H-compact if , for every finite
subset A C X, there exist a compact weakly H-convex subset
D C X such that KUACD.

DEFINITION 1.3. In a given H-space (X, {T'4}), amap F: X — 2%

is called an H-KKM mapping if T'a C | J_ 4 F(z) for each finite subset
Aof X.

DEFINITION 1.4. A subset D of a topological space X is called
compactly open ( respectively, compactly closed ) if for every compact
set K C X, the set D N K is open (respectively, closed) in K.

REMARK 1.5. Tt is easily shown that a closed-valued (respectively,
open-valued ) mapping F:X — 2Y is compactly closed (respectively,
compactly open ). And a mapping F:X — 2Y is compactly open on
X if and only if a mapping G:X — 2Y defined by, for every z € X,
G(z) =Y \ F(z) is compactly closed on X.

DEFINITION 1.6 [10]. Let X and Y be two topological spaces. A
mapping F' : X — 2Y is said to be transfer closed-valued on X if, for
every * € X, y € F(x) implies that there exists a point z' € X such
that y & F\(z'), the closure of F(z').

DEFINITION 1.7 [10]. Let X and Y be two topological spaces. A
mapping F:X — 2Y is said to be transfer open-valued on X if, for
every z € X, y € F(z) implies that there exists a point ' € X such
that y € int(F(z")), the interior of F(z').



74 S. C. Lee and S. J. Lee

REMARK 1.8. It is easily proved that a closed-valued { respectively,
open valued ) mapping F:X — 2Y is transfer closed-valued ( respec-
tively, transfer open-valued ) by putting ' = z. Also a mapping
F:X — 2Y is transfer open-valued on X if and only if the mapping
G:X — 27, defined by, for every z € X , G(X) = Y\ F(z), is transfer
closed-valued on X.

DEFINITION 1.9. An H-spaces (X, {['4}) is called an H-Banach
space if X is a Banach space.

2. Main results

LEMMA 2.1 [11, 14]. Let X be a nonempty set, Y a topological
space and G : X -+ 2¥ a mapping. Then G is transfer closed-valued
(respectively, transfer open-valued) if and only if

ﬂ G(z) = ﬂ G(z) ( respectively, U G(x) = U int{G(z) ).
TeX z€X reX zeX
Now we introduce the following H-KKM theoerm due to Bardaro
and Ceppitelli {1].
THEOREM 2.2. Let (X,{T4}) be an H-space and F : X — 2% an
H-KKM mapping satisfying:
(1) for each z € X, F(z) is compactly closed,

(2) there is a compact set L C X and an H-compact K C X such
that for each weakly H-convex set D with K C D C X, we

have
(\(F(z)nD)c L.
zeD
Then [, x F(z) # 8.
LEMMA 2.3. Let (X,{T'4}) be an H-space and F : X — 2X be an
H-KKM mapping such that

(1) F is transfer closed-valued for each z € X,

(2) there exists a compact subset L of X and an H-compact subset
K of X such that for each weakly H-convex subset D of X with
K Cc D C X, the following holds,

(\F=)nD)c L.
z€D
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Then (\,ex F(z) # 0.

Proof. Define F :X — 2X by F(z) = F(z) for each z € X. Since
F'is an H-KKM mapping, F is also an H-KKM mapping with closed-
valued. By Theorem 2.2, (. x F(z) # 0. Since F is transfer closed-

valued, by Lemma 2.1, we have (), oy F(2) = (,cx F(z) # 0. This
completes the proof.

We begin with the following Theorem 2.4 which is the existence
theorem for a generalized vector variational inequality on H-Banach
spaces.

In the sequel, F(A) = {J{F(z) : ¢ € A} and a multifunction F :
X —» 2Y is compact provided F(X) is contained in a compact subset
of Y.

THEOREM 2.4. Let (X,{T'4}) be an H-Banach space, Y be a Ba-
nach space, {C(z) : z € X} be a family of closed, pointed and convex
cone in Y such that int C(x) # ¥ for every € X, and a multifunction
W : X — 2Y, defined by W(z) = Y \ int C(z) for any z € X, be
closed. Assume that:

(1) T : X — 2MXY) js a upper semi-continuous and compact
multifunction, and g : X — X is continuous;

(2) for each y € X, there exists s € T(y) such that {s,y — g(y)) &
—nt C(y);

(8) foreachy € X, By = {z € X : {s,z — g(y)) € —nt C(z) for
any s € T(z)} is H-convex;

(4) there exist a compact set L C X and an H-compact set K C X
such that, for every weakly H-compactset D with K C D C X,
we have

n {x€D:3s € T(z) s.t. {s,y — g(z)) & —nt C(z)} C L.
yeD

Then the following generalized vector variational inequality on H-
space (H-GVVI) is solvable.

(H-GVVI) Find z € X such that for each y € X, there exists an
s € T(z) satisfying (s,y — g(z)) ¢ —int C(2)

Proof. Define a multifunction F: X — 2% by
F(y) ={z € X : (s,y — g(2)} & —int C(z) for some s € T(z)}
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for y € X. Then F i3 an H-KKM mapping on X. In fact, suppose that
F1s not an H-KKM mapping, then there exists a finite set A C X such
that I'gy ¢ |J,c4 F(z). Thus there exists z € I'4 such that z ¢ F(x)
for each z € A and hence for any s € T(z) and * € A, we have
(s, — g(2)) € —int C(2).

Since B, is H-convex by (3) and A C B,, I'y C B,. Therefore z €
B,, and for any s € T(z), {s,z — ¢(z)} € ~int C(z), which contradicts
the assumption (2). Thus F is an H-KKM mapping.

Now, we will prove that for each y € X, F(y) is closed. Indeed,
let {zn}3., be a sequence in F(y) such that z, — z. for any fixed
y € X. Since z, € F(y) for all n , there exists an s, € T(2n)
such that (sn,y — g(za)) € W(z.) = Y \ (—int C(zy)) for all n.
From (1), we can assume that there exists s. € L(X,Y) such that
8p — 34 and s, € T(z,). Since g is continuous, then g{z,) — ¢(z.).
Since ( -,- } is continuous, {sp,y — g(za)) — {s«,y — g(z.)). Since
(sn,y — 9{za)) € W(z,) and W is closed, we have (s.,y — g(z.)) €
W(z,) , i.e. , 2« € F(y). Hence F(y) is closed; it is natural that F(y)
is transfer closed. It is easy to see that the present assumption (4) is
the same as the assumption (2) of Lemma 2.3. Thus by Lemma 2.3,
Nyex F(y) # 0, ie. , there exists € X such that for each y € X,
there exists an s € T(z) satisfying {s,y — g(z)) &€ —int C(z). This
completes the proof.

THEOREM 2.5. Let (X,{T 4}) be an H-Banach space, Y be Banach
space, {C(z) : # € X} be a family of closed, pointed and convex cone
in Y such that int C(z) # @ for every z € X, and T : X — 26(XY)
be multifunction. If € X is a solution of the above (H-GVVI), then
z € X is a solution of the following generalized vector complementarity
problem on H-space (H-GVCP).

(H-GVCP) Find z € X such that there exists an s € T(z) satis-
fying (s,g(z)) ¢ int C(z), where s € C* = {g € L(X,Y) : (g,2) &
—int C(z), z € X}.

Proof. Let = solve H-GVVIL. Also letting y = w + g{«) for each
w € X, we have {s,w) ¢ int C(z) for each w € X. Hence we have
that there exists s € T(z) such that (s,¢(z)) € int C(z) and such that
(s,w) ¢ —int C(z) for each w € X. Therefore s € C*. This implies
that z solves H-GVCP.
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By Theorem 2.4 and Theorem 2.5, we can obtain the following The-
orem 2.6 which is the existence theorem for (H-GCP).

THEOREM 2.6. Let (X,{T'4}) be an H-Banach space, Y be a Ba-
nach space, {C(z)} be a family of closed, pointed and convex cone
in Y such that int C{z) # @ for every = € X, and a multifunction
W : X — 2Y, defined by W(z) = Y \ int C(z) for any z € X, be

closed. Assume that:

(1) T : X — 2MXY) js 4 upper semi-continuous and compact
multifunction, and ¢ : X — X is continuous;

(2) for each y € X, there exists s € T(y) such that {s,y — g(y)) €
—int C(y);

(3) foreachy € X, By ={z € X : (s,z2—g(y)) € —int C(y) for s €
T(y)} is H-convex;

(4) there exists a compact set L C X and an H-compact set K C
X such that, for every weakly H-compact set D with K C D C
X, we have

n {z € D:3s € T(z) s.t. {3,y — g(z)) & —int C(x)} C L.
yeD

Then ( H-GVCP ) is solvable.
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