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KIVENTIDIS TYPE FIXED POINT THEOREMS

W. B. Im, Y. J. Cho and S. M. Kang

I. Introduction

Let (X)d) be a metric space and S)T be mappings from X into 

itself. Then a point x E X such that x ~ Sx = Tx is called a common 

fixed point of S and T, If we put S ~ lx (: the identity mapping on 

X))i.e., x = Ta、then the point x is called a fixed point of T.

In 1922, the Polish mathematician, Banach, proved a theorem which 

ensures, under appropriate conditions, the existence and uniqueness of 

such a fixed point, which is called Banach5s fixed point theorem or the 

Banach contraction principle. This theorem is also applied to show the 

existence and uniqueness of the solutions of differential equations, inte

gral equations and many other applied mathematics and many authors 

extended, generalized and improved Banach's fixed point theorem in 

different ways. In [6], Jungck introduced more generalized commuting 

mappings, called compatible mappings, which are more general than 

commuting and weakly commuting mappings. In general, commuting 

mappings are weakly commuting and weakly commuting mappings are 

compatible but the converses are not necessarily true ([6], [19]). Sev

eral authors proved some common fixed point theorems for commuting, 

weakly commuting and compatible mappings [6]-[8], [10], [16]-

[2이). Recently, Jungck, Mu호thy and Cho [이 defined the concept of 

compatible mappings of type (A) which is equivalent to the concept 

of compatible mappings under some conditions and proved a common 

fixed point theorem for compatible mappings of type (A) in metric 

spaces and Banach spaces ([9], [12]). In [13], Pathak and Khan, intro

duced the concept of compatible mappings of type (B) and compared 

these mappings with compatible mappings and compatible mappings 

of type (A) in normed linear spaces. In the sequel, they derived some 

relations between these mappings and proved a common fixed point
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theorems of Gregus type for compatible mappings of type (B) in Ba

nach spaces.

In [11], T. Kiventidis proved the following:

THEOREM A. Let T be a mapping from a complete metric space 

(X, d) into itself satisfying the following condition:

(1.1) d(Tx<Ip、) < d(x,y) 一 w(d(x,y))

for all x^y E X, where w : R+ = [0,oo) —> R+ is a continuous function 

such that 0 < w(r) V r for all r E R+ — {0}. Then T has a unique 

fixed point in X.

In [15], Ray extended Theorem A by using the concept of commuting 

mappings in a metric space as follows:

THEOREM B. Let A, B and T be mappings from a complete metric 

space (X)d) into itself such that 4(X) U B(X) C T(X\ AT = TA, T 

is continuous and

(L2) d(Ax,By) < 40以,7§) — u)(d(Tx，Ty))

for all x^y E X)where w :氏+ —> is continuous function such that 

0 V w(r) < r for all r :丑+ — {0}. Then A, B and T have a unique 

common fixed point in X*

Very recently, in [17], Rhoades, Tiwary and Singh extended also 

Theorem A by using the concept of compatible mappings (cf. Defini

tion 2.1) in a metric space as follows:

THEOREM C. Let A and B be continuous mappings from a complete 

metric space (X, d) into itself. Then A and B have a common fixed 

point in X if and only if there exists a continuous mapping T : X 

f(X) A g(X) such that the pairs (A, T} and (B,T} are compatible,

d(Tx^Ty) < max{d(7z)血！:)机

By) + d(모饥 Ax)]}
(13) z

—w(max(J(Tx, Ax\ 山 By), d(Axy By), 

淑加 By) + d0y、&)]}) 

厶 
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for all x^y € X)where w : R+ —> 氏+ is continuous function such that 

0 < w(r) < r for all r E — {0}. Indeed, A, B and T have a unique 

common fixed point in X.

In this paper, by using the concept of compatible mappings of type 

(B) in metric spaces, we give some common fixed point theorems for 

four compatible mappings of type (B) satisfying the more general con

tractive mappings of the Kiventidis type in metric spaces. Finally, 

we give also some convergence theorems for self-mappings in metric 

spaces satisfying some conditions. Our main result용 extend, general

ize and improve Theorems A, B, C and many others for commuting, 

weakly commuting and compatible mappings.

II. Compatible mappings of type (B)

In this section, we introduce the concept of compatible mappings of 

type (B) in metric spaces and show that, under some conditions, these 

mappings are equivalent to compatible mappings, compatible mappings 

of types (A) and (B) in metric spaces. Now, we state some definitions, 

examples and propositions for our main results:

DEFINITION 2.1 [6]. Let S and T be mappings from a metric space 

(X, d) into itself. The mappings S and T are said to be compatible if

lim d(STxn,TSxn) = Q 
n—*oo

when (xn} is a sequence in X such that limrt^oo Sxn = Txn

=t for some t E X.

DEFINITION 2.2 [9]. Let S and T be mappings from a metric space 

(JC, d) into itself. The mappings S and T are said to be compatible of 

type (A) if

lim d(TSxn^SSxn) = 0 and lim d(STxnyTTxn) — 0
n—*8 n—*8

when {a;n} is a sequence in X such that limnT8 Sxn — limn_>oo Txn 

=t for some t E X.
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DEFINITION 2.3 [13]. Let S and T be mappings from a metric space 

(X, d) into itself. The mappings S and T are said to be compatible of 

type (B) if

lim < :[lim d(STxn^St) + lim d(SZ,SS@n)L

n—>oo 2 n—*oo n—»-oo

lim d(TSxnySSxn) < 財 lim d(TSxn^Tt) + lim 必7咔二「7以孔)] 
n―>8 2 n—*oo n―>8

when {xn} is a sequence in X such that limm8 Sxn = limn_^oo Txn 

=t for some t E X.

We give some properties and relations on compatible mappings and 

compatible mappings of types (4) and (B) in metric spaces.

Proposition 2,1 [9]. Let S and T be continuous mappings of a 

metric space (X, d) into itself. If S and T are compatible, then they 

are compatible of type (A).

Proposition 2.2 [9]. Let S and T be compatible mappings of type 

(A) from a metric space (X)d) into itself. If one of S and T is contin

uous, then S and T are compatible.

From Propositions 2.1 and 2.2, we have the following:

Proposition 2.3 [이. Let S and T be continuous mappings from 

a metric space (X, d) into itself. Then S and T axe compatible if and 

only if they are compatible of type (A).

By suitable examples, Jungck, Murthy and Cho [9] have shown that 

Proposition 2.3 is not true if S and T are not continuous.

PROPOSITION 2.4 [13]. Let S and T be compatible mappings of 

type (4) from a metric space (X)d) into itself. Then S and T are 

compatible mappings of type (B).

PROPOSITION 2.5 [13]. Let S and T be continuous mappings of a 

metric space (X, d) into itself. If S and T are compatible of type (B)? 

then they are compatible of type (A).

PROPOSmON 2.6 [13]. Let S and T be continuous mappings of a 

metric space (X, d) into itself. If S and T are compatible mappings of 

type (B)? then they are compatible.
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PROPOSITION 2.7 [13]. Let S and T be continuous mappings from 

a metric space (X)d) into itself. If S and T are compatible, then they 

are compatible of type (B).

From Propositions 2.4^2.7, we have the following:

PROPOSITION 2.8 [13]. Let S and T be continuous mappings of a 

metric space (X, d) into itself. Then

(1) S and T are compatible if and only if they are compatible of 

type (B).

(2) S and T are compatible of type (A) if and only if they are 

compatible of type (B).

Pathak and Khan [13] gave some examples that Proposition 2.8 is 

not true if S and T are not continuous.

PROPOSITION 2.9 [13]. Let S and T be compatible mappings of 

type (B) from a metric space (X, d) into itself. If St = Tt for some 

t e X, then STt = TSt = SSt = TTt.

PROPOSITION 2.10 [13]. Let S and T be compatible mappings of 

type (B) from a metric space (X, d) into itself. If limn->oo Sxn = 

limn—8 Txn — t for some £ £ X)then

(1) lim •'•누 8 TTxn = St if S is continuous at t,

(2) limn^oo SSxn = Tt if T is continuous at t,

(3) STt — TSt and St ~ Tt if S and T are continuous at t.

The following examples which give some relations between compat- 

ibTe'hiappi표gs of types (A) and (B) are given in [14]:

EXAMPLE 2.1. Let X = [0, oo) be a metric space with 난xe Euclidean 

metric space y) = \x — y\. Define the mappings S\ 7 : X t X by

(I + ii x e [0,1) ( 2 ~ x if ⑦ € [°，壹)
S(x) = { 1 if ⑦=. T(x) = < I if — I

(0 ii x e (5,00), ( 1 ii x E

respectively. Then S and T are compatible, but they awe neithe호 com

patible of type (A) nor compatible of type (B).
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EXAMPLE 2.2. Let X = [0, oo) be a metric space with the Euclidean 

metric d(花浦)=\x ~ y\. Define S and 71: X X by

if e [o, I) 

if c = * 

if h C (|,oo),

,j + x
S(时=< 2

、1

r i~x if ® € [0, j) 

T(x) = < 1 if a: = I

、0 it x E (|,oo),

respectively. Then S and T are compatible of type (B), but they are 

neither compatible nor compatible of type (A).

EXAMPLE 2.3. Let X = [0, oo) be a metric space with the Euclidean 

metric d(x^ g) = — y\. Define the mappings S, Z1 : X —> X by

1 + x

S(w) = < 4

0

if x G [0,1] f 1 ~ x

if x = 1 T{x) = < 3 

if x € (l,oo), 1

ii x E [0,1] 

if ⑦=1

ii x E (l,oo),

respectively. Then S and T are compatible of type (B), but they are 

neither compatible nor compatible of type (A).

EXAMPLE 2.4. Let X = [0,1] be a metric space with the Euclidean 

metric d(x, g) = pr — y\. Define the mappings S and T : X —> X by 

S(c) = {] if x G [0,1) 

if c £
m)=

if £ £ [0, I) 

if z £

1 — X

1

respectively. Then S and T are not compatible, but they are compat

ible of types (A) and (B).

REMARK. We note that the definitions of compatible mappings and 

compatible mappings of types (4) and (B) are independent for discon

tinuous mappings, and the mappings S and T in Examples 2.1~2.3 

have not a common fixed point in X, but the mappings S and T in 

Example 2.4 have a common fixed point 1 in X.
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III. Common fixed point theorems

Let (X, d) be a metric space. Let A, S, T : JY t X be mappings 

satisfying the following conditions:

(3.1) 4(X) C T(X\ B(X) C S(X) and

By) < max{d(Ax, Sx), d(B由 Ty \ Ty),

^[d(Ax,Ty) + d(By, Sx)]}

‘32) — w(max{J(Ax, Sx), d{By, Ty\d(Ax, Ty\

+ d(物,Sc)]}) 
厶

for all xyy E X, where w : R누 t R+ is a continuous function such 

that 0 < w(r) < r for all r C — {0}.

By (3.1), since 4(X) C T(-Y), for any arbitrary point xq G -V, there 

exists a point E X such that Axq = 꼬z고. Since B(X) G S(X\ for 

this point we can choose a point 旺 € X such that Bx^ = Sx2 and 

so on. Inductively, we can define a sequence {yn} in X such that

f y2n = T^2n+l = ^-^2n
(3.3) { _ 只

I ；2n+l ―■如T2n+2 —上位2口+1

for n = 0,1,2, • • * .

LEMMA 3.1. Let A, B, S and T be mappings from a metric space 

(X)d) into itself satisfying the conditions (3.1) and (3.2). Then

lim d(yn,yn+1) = 0, 
n—>8

where {yn} is the sequence defined by (3.3).

Proof. Let dn = d(yn,yn+i) for n = 0,l,2,- • - . Now, we p호。ve 

that the sequence {dn} is non-increasing in .R+, i.e., dn < dn-x fo호 
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n = 1,2, - - - . By (3.2), we have

d호n = ?/2n+고) = </(Ax2n,

< XS13X.{d{Ax2niSx2n)'>d{Bx2n+]_,Tx2n+l)-, d{Ax2n,Tx2n+l)->

1
-[d(Ax2n,Tx2n+l) + d(BX2n+l, Sx2n}\}
厶
一 w(max{(/(Ax2n, ^2n),^(Bx2n+i,Tx2n+i),

d^Ax2n, T^2n+l),

—[</(j4x2n, ),S，*^2n)]})
厶

=max{d(y2n, ?/2n-l), d(y2n+l, y2n\^(j/2n, !/2n),

—<^(y2n,y2n) + ^(?/2n+l, V2n-1)])
厶
—w(max(d(y2n, ?/2n-i), d(g&+i,伊如)，d(y2n-,切 n),

|[^(l/2n,?/2n) +^(y2n+l,V2n-l)]}) 

£

=max{d(g&,M如-i),d(g2n+i"/&),

5同如中浦&) + cf(j/2n,!/2n-l)]}
厶
—U?(max{J(?/2n, ?/2n-l), ?/2n),

^R(?/2n4-l? ?/2n) + d(아沁 ?/2n-l)]}) 
厶

=Hiax{c?2n—1, &如)5(』2料 + ^2n —1)} 
厶

—m(max{d2n —1, + ^2n—1)})•

If d& 느 c?2n-i for any n, then we have d& W <^2n —、。(匕功队) < 衫2”, 

which is a contradiction. Therefore, we have

(3.5) d2n < d2n-l 一 W(J2n-l)-

Similarly, we have

(3.6) 如너T < d，2n — 302”).
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From (3.5) and (3.6), it follows that, for every n G TV, dn^i < dn — 

w(dn), which implies that

n n

〉：w{di) < — &+1) = d。— d^+i M d。.

i=i

Therefore, the series £旗。w(d2) converges and so limn_.oo w(dn) = 0. 

Since {dn} is non-inc호easing in it converges to the limit p. Suppose

that p > 0. Then, since w is continuous, limn_*8 復(dn) = w(p) = 0, 

which is a contradiction and so p = 0. This completes the proof.

LEMMA 3.2. Let A, B, S and T be mappings from a metric space 

(X, d) into itself satisfying the conditions (3.1) and (3.2). Then, se

quence {yn} defined by (3.3) is a Cauchy sequence in X,

Proof. By virtue of Lemma 2.1, lim“T8 ；口+1) — 0. In order to 

show that {yn} is a Cauchy sequence in X, suppose that {y2n} is not a 

Cauchy sequence. Then there is an e > 0 such that fo호 each even integer 

2fc, thse exist even integers 2m(幻 and 2n(k) with 2m(fc) > 2n(A?) > 2k 

such that

(3.7) d(gzm(k))；2n(k))〉&

For each even integer 2k^ let 2m(fc) be the least even integer exceeding 

2n(k) satisfying (3.7), that is,

(3.8) d(^y2n(k), y2m{k)—2)— h 。(洗?3(幻)?/2m(S)) > &

Then for each even integer 2 知 we have

e — d(，2 卩(左))，2m(&:))

—d(，2n(幻)y2m(k)—2^) + d(，2m(A:)-2, y2m(k) — l )

By Lemma 2.1 and (3.8), it follows that

(3.9) d(02W；)32m(幻)T € as Ar oo.
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By the triangle inequality, we have

|d(，2n(k)浦2m(幻-1) 一 d(g&隹)"/2m(*))1 으 ^2m(&))5

|^(?/2n(A:)4-15 ?/2m(fc)—1) 一 ^(?/2n(fc), J/2m(fc))|

Y d(j/2m(幻—1)，2m(A;)) + ^(l/2n(fc)? J/2n(fc)4-l)*

From Lemma 2.1 and (3.9), as A; —> oo,

(3.10) d(y2n(k)^y2m(k)-l) T e, d(，2n(幻+102m(幻t) t e.

Therefore, by (3-2) and (3.3), we have

V ^(j/2n(fc)> ?/2n(fc)+l) + ^(V2n(A:)4-l? ?/2m(fc))

=^(j/2n(fc)? ^2n(fc)4-l) + cf(-A^2m(fc) > Br2n(k)+1)

切?雄)+고) + max{d(4l；2m(左), So2m“)), 

d(B@2n(幻+1, 끄C2n(A:)+l), d(Ax2m(fc) 7 21*^2n(fc)4-l)>

— [d(Ax2m(fc), 끄：此“(幻+ 1) + 지K)••卜고, %：2”3(充))]}
厶
-w(m.ax{d(<Ax2m^k^Sx2m(k)\d(Bx2n(k)+i,Tx2n(k)+i),

d{Ax2m{k) 1 ^®2n(fc)+l),

(3.11) 1
—[(/(Aj：2ni(fc)? 21'c2n(fc)+l) + <^(-S^2n(fc)+l, S%；2m(k))]})

厶
= d(，2n(&),，2n(&)+고) + max{d(g2m(k)"/2m“：)—i))

d(g2n(k)+l ?，2n(k)))d(，2m(X:) ,，2ti(幻)，

云]d(g2m(k)>，&(*；)) + d(，2n(A:)+고 )，2m(k) T)]} 

tP(max{d(g2m(k))?/2m(fc) —1), *^(?/2n(fc)+l, ?/2n(fc))?

d(jj2m(k) ?，2지k) ),

訣d(i/2m(A:),，2n(&)) + ^(y2n(fc)+15 ?/2m(fc) —1)]}),

Since w is continuous, as A: oo in (3.11), from (3.9) and (3.10), it 

follows that

e < 0 + max{0,0,6, ^(e + 时} — w(max(0,0, e, + 时})，

z 厶
=E — W(6)V 6.
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This means that w(e) < 0, which is a contradiction. Therefore, {y2n} 

is a Cauchy sequence in X and so {yn} is also a Cauchy sequence in 

X. This completes the proof.

THEOREM 3.3. Let A, B)S and T be mappings from a complete 

metric space (X)d) into itself satisfying (3.1), (3.2) and the following 

conditions (3.12) and (3.13):

(3.12) one of A, B, S and T is continuous,

(3.13) the pairs {A, S} and {ByT} are compatible of type (B).

Then A, B〉S and T have a unique common fixed point z in X.

Proof. By Lemma 3.2, the sequence {yn} defined by ⑶ is a Cauchy 

sequence in X and so, since (X, d) is complete, it converges to a point 

z in X, The subsequences {Ax2n}t {Bx2n-n}^ {S©如} and (Tx2n+i} 

of {yn} also converge to the point z.

Now, suppose that T is continuous. Since B and T are compatible 

of type (B), by Proposition 2.10, as n —oo,

BBx2n^l-> 7爲2n+l, TBx2n+l T Tz.

Putting x = X2n and y = Tx2n^\ in (3.2), we have

d(Ax2n,BBx2n^l)

< mox{d(Ax2n, Sx2n\ 꼬Bz：2n+1),

d(^Ax2n ,)T)：

(3.14) 云[涉(如2小7氏喝+1) + $£&)]}

一 w(max{J(Ax2n, Sm危d(BS；2n+i,끄乩幻中), 

d(Ax2n,TBx2n+l),

^[d(Ax2n }TBx2n+l) + d(BBx2n+i-,Sx2n)]}-

Taking n —> oo in (3.14), if Tz 寸二 z, then we have

d{z^Tz) < max(J(2：, z), d(Tz^Tz\d^z^Tz\

如(z,n)+ d(n,z)]} 

厶
—w(max(d(z, z),

:风&,言)+电%,圳}
厶
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or

d(Tz^z) < d(Tz, z) — w(d(Tz^ ^)) V d(Tz,2r),

which is a contradiction. Thus we have Tz = z. Again replacing x by 

X2n and ; by z in (3.2), we have

d{Ax2n^Bz)

< max(d(Aa：2n56%危꼬z),d(Ax2n^Tz)1

(3.15) -[d(Ax2n^Tz) + d(Bz,S飯:2n)]}

一 w(max{d(Ax2n9 Sx2n\d(Bz,Tz)〉d(Ax2n-)Tz\

^[d(Ax2n,Tz) + d(Bz, $%)]}). 

厶

Taking n —> 8 in (3.15), if Bz 尹 then we have

d(Z Bz) < max{0, d(B礼 z), 0, z)}
厶

一 w(max{0, d(Bz)z), 0, :d(Bz〉z)})

£

or

d(Bz)z) < d(Bz, z)—初(d(Bz, z)) < d(Bz)z),

which means that Bz = z. Since B(X) C S(X), there exist용 a point 

u 6 X such that Bz = Su = z. By using (3.2) again, we have

d(Auy z) = d(Au^Bz)

< max{<i(Au, Su\Tz), d(Au^ Tz\

^(d(Au,Tz) + d(BzySu))}

厶
—w(meix{d(Au, Su),d{Bz^Tz\ Tz\

：(d(加,/z) + d(Bz,，知))})
乙

—max{d(Au, z\ 0, d{Au^ z), :d(厶攻,z)}

厶
—w(max{d(Au, z), 0,:d(』4%z)})

厶
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or

d(Auyz') < z)—也(d(4饱 z)) < d(Au^ z\

which is a contradiction and so Au = z. But since A and S are com

patible of type (B) and Au = Su = z, by Proposition. 2.10, we have 

Sz = SAu = ASu = SSu = AAu = Az. By using (3.2), we have

d(Azy z) = d(Azj Bz)

(3.16)

< max(J(Az, Sz\ d(Bz、Tz\ d(Az^ Tz\

|[J(Az,Tz) + d(Bz,Sz)]} 

厶
u*max{d(4z, Sz), d(Bz, Tz^ Tz、)"

：d(4z,Fz) + d(Bz,&)]}) 

匕

=mcix{0,0, z), -[d(Azj z) + d(4z：z)]}
厶

—w(max(0,0, d(Az^ - [d(Az^z) + d(4\z)]})
厶

or

d(厶z,z) = z) — w(d(Az, ^)) < d(Azy z\

which is a contradiction and so Az = z. Therefore, Az ~ Bz — 

Sz = Tz = z, that is, z is a common fixed point of A, B, S and 

T. The uniqueness of the common fixed point z follows easily from

(3.2).  Similarly, we can also complete the proof when A or 5 or T is 

continuous. This completes the proof.

If we put A = B in Theorem 3.3, we have the following:

THEOREM 3.4. Let S and T be continuous mappings of a complete 

metric space (X)d) into itself. Then S and T have a common fixed 

point in X if and only if there exist a continuous mapping A : X 

S(X) A T(X) such that

(3.17) the pairs (A, S} and (A,T} are compatible of type (B)?

d(Ax, Ay) < max{d(4皿 Sy\d(&/)Ty), d{Ax^ Ty\

^[d(Ax.Ty) + d(Ay,Sx)]}

(3.18) 2
—w(max(J(Ax, Sy\ d(Ay)Ty\d(Axy Ty\

7勺)+ d(Ay, Sz)]})
厶
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for all x^y E X, Indeed, A, S and T have a unique common fixed point 

inX.

Proof. Since

4(x)c s(x)n 以x) c s(x)

4(X) C S(X) n T(X) C T(X\

from Theorem 3.3, it follows that S and T have a common fixed point 

inX.

Conversely, let z C X be a fixed point of S and T, i.e., Sz —Tz — z 

and define Ax = z for aH x E X. Then A is a continuous function from 

X into S(X) A T(X). Moreover, we have, for all x E

ASx = z, SAx = Sz = z,

ATx = Zj T Ax = Tz = z

and so AS = SA and AT = TAy i.e., the pairs A, S and A, T are 

commuting. Therefore, the pairs A, S and B, T are compatible of type 

(A). On the other hand, the condition (3.19) holds also. This completes 

the proof.

If we put A — B and S = 꼬 in Theorem 3.3, we have the following:

COROLLARY 3.5. Let S be a continuous mapping from a complete 

metric space (X, d) into itself. Then S has a fixed point in X if and 

only if there exists a continuous mapping A : X S(X) such that

(3.19) the pair {A, S} is compatible of type (B),

d(Ax, Ay) < max{d(Ax, Sy), d(Ay, Sy), d{Ax. Sy),

；威一％, Sy) + d(Ay, Sx)]}

(3”이 — w(jxiax{d(Ax^ Sy), d(Ay, Sy), d(Ax, Sy),

*«如,Sy) + d{Ay, Sz)]} 

乙

for all x,y G X, where w : R+ t R+ is a continuous function such 

that 0 < w(r) < r for all r E R^~ 一 {0}. Indeed, S and T have a unique 

common fixed point in X.

Putting A = lx (:the identity mapping on X) in Theorem 3.4 and 

S = T in Corollary 3.5, respectively, we have the following:
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COROLLARY 3.6. Let S and T be continuous mappings of a com

plete metric space (瓦 d) into itself. Then S and T have a common 

fixed point in X if and only if

d(:r, g) < max{d(x, Sx), d(g,幻/), d(Sx,'幻/),

(:+d(g,Sz)]}

CD w(max{c?(ar, Sx), d(g, Ty), d(Sx, Ty),

|[d(x,Ty) + d(y,Sx)])) 

厶

for all y £ X, where w : /?+ 一수 _R+ is a continuous function such 

that 0 V w(r) < r for all r G R* — {0}. Indeed, S and T has a unique 

common, fixed point in X.

COROLLARY 3.7. Let S be a continuous mappings of a complete 

metric space (X)d) into itself. Then S has a fixed point in X if and 

only if

d(%g) < max{d(x, Sx\ d(y, Sy), d(x, y), 

^[d(x,Sy) + d(y,Sx)]}

(3龙2) — w(max(d(s, Sx), d(g, Sg), d(rc, y),

^[d(x, Sy) + d(y, Sx)]}) 

厶

for all x, y G X, where w : —> _??+ is a continuous function such

that 0 V w(r) < r for all r E R+ — {0}. ”

IV. Convergence of self-mappings and fixed points

In this section, by using Theorem 3.3, we give some convergence 

theorems for sequences of mappings from a metric space (X, d) into 

itself satisfying some condition.

THEOREM 4.1. Let {An), {Bn}, (Sn} and (Tn} be sequence of 

mappings from a metric space (X, d) into itself such that {An}, {Bn}^ 

{&} and {Tn} converge uniformly to self-mappings A, 5, S and T on 
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X, respectively. Suppose that, for n = 1,2, •■- , is a unique common 

fixed point of An, Sn and Tn and the self-mappings A, B, S and 

T satisfy the following condition:

d(Ax^By) < max{J(Ax, Sy\ J(By, Ty), d{Ax^Ty\ 

^[d(Ax,Ty) +d(By,Sx)]}

(4.1) 2
一 w(rnax{d(Ax, Sy), d(By, Ty), d(Ax, Ty), 

^[d(Ax,Ty) + d(By, Sx)]}) 

厶

for all x^y € X, where w : R+ t R+ is a continuous function such 

that w(r) = ar for all r E — {0} and a € (0,1). If z is a common 

fixed point of A, B, S and T and sup{c/(zn, z)} V +oo, then zn z as 

n t oo.

Proof. Let % > 0 for t = 1,2. Since {An} and {5n} converge uni

formly to self-mappings A and S on X, respectively there exi융t positive 

integers JV2 such that, for all z € X,

d(AnxyAx) V 6i for n > N>

d(SnXy Sx) < 62 for n > N?)

respectively. Choose N = max{M)M} and e = max(ei,€2). For 

n > TV, we have

=d(Anzn,Bz) < d(AnZn.Az^ + d^Azn.Bz)

< d{Anzn^ Azn) + max{J(Azn,5^n),

d{Bz,Tz\d{Azn,Tz\ -[A(Azn,Tz) + d(Bz, Szn)]}
£

—m(max{d(/4z而 S*), d{BzyTz\ d(Azn^Tz\

；[d(4z而끄z) + d(Bz, Szn)]})

W Azn^ + max{d(/4zn, A.nzn^ + d^Anzn^ Sz”)，0,

d(^Azn^ Anzn^ + d(^Anznj Tz^

5 5 *S*n^n) + d(S”Zn, T z)
厶
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+ d(BZ)Sn^n ) + d(Sq：編 S^n)]}

d^Az-fi, Anz-(ij + d(^Anzni 꼬2))

—[c?(j4.zn, Snzn^ + </(Snzn^ Tz) 
厶
+ d(Bz)Snzn^ + d(Snzn, SzQ]})

=d(Anzn,Azn) + max(rf(Anzn, Azn) +d(Snzn,Szn),0,

(4.2) d^AfiZfi)里42相)+ z), 5 zn, Azn) + d(^zn: z)
厶

+ d(Szn,Snzn) + d(zn,z)])

-w(max{d(Anzn, Azn) + d(Snzn, Szn), 0,

d(^Anzn, Azn) + d(^zn, z), 5[d(4nzn, Azn) + d(^zn, z) 
厶

+ d{Szn,SnZn) + d(z”,z)]})

V 어- max{2c, 0* + d(zn, z), e + d(znyz)}

一 w(max{2e,0, e4- d{zn, z), e + d{zn, 2)}).

From (4.2), if d(z”，z) > e, then we have

d(2M, z) < e + max(2e,0, e + d(zn,z\ e + d(zn, z)}

一 w(max{2e, 0, e + d(zn, z), e + d(zn, z)})

= € + (e + d(zn, 2) — w(e + d(z而 z)).

Since w(t) = at for all f > 0 and a € (0,1), we have

w(e + d(zn.z}} = a(e + d(zn, z)) < 2e

or
. 、 2c — Oi€

d(zn,z) <------ ・
a

Then letting a -h- 1~ in (4.2), it follows that e < c?(^n, z) < 6, which 

is a contradiction. Therefore for n > TV, d(^n, 2) < e. This means that 

{zn} converges to z. This completes the proof.

Similarly, we have the following:
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THEOREM 4.2. Let {An}, (-Bn), {&} and {Tn} be sequences of 

mappings from a metric space (X, d) into itself satisfying tne following 

condition:

d(Anx. Bny) < max{d(Anx, Bnx), d(Bny. Ty),

d(Anx,Ty), ^-[d(Anx,Ty) + d(Bny,Sx)]}

(4.3) Z
-w(max(d(Anx, Bnx), d(Bny, Ty\ 

d(Anx,Ty\ :二Ty) + d(:Bng,S圳}) 
厶

for ailx^y € X, w五ere w : 一누 R+ is a continuous function such that 

w(r) = ar for all r E R+ — {0} and a € (0,1). If (An), (Bn}, {&} 

and {7^} converge uniformly to self-mappings A, B、S and T on X, 

respectively, then A, B, S and T satisfy the condition (4.1). Further, 

the sequence {zn} of unique common fixed point zn of An, Bnj Sn and 

Tn converges to a unique common fixed point z of A, B, S and T if 

sup{d(z“,z)} < +8.
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