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KIVENTIDIS TYPE FIXED POINT THEOREMS

W. B.IM, Y. J. CHO AND S. M. KANG

I. Introduction

Let (X,d) be a metric space and S, T be mappings from X into
itself. Then a point r € X such that z = Sz = T'r is called a common
fixed point of S and T. If we put S = Ix (: the identity mapping on
X), i.e,, z = Tz, then the point z is called a fixed point of 7.

In 1922, the Polish mathematician, Banach, proved a theorem which
ensures, under appropriate conditions, the existence and uniqueness of
such a fixed point, which is called Banach’s fixed point theorem or the
Banach contraction principle. This theorem is also applied to show the
existence and uniqueness of the solutions of differential equations, inte-
gral equations and many other applied mathematies and many authors
extended, generalized and improved Banach’s fixed point theorem in
different ways. In [6], Jungck introduced more generalized commuting
mappings, called compatible mappings, which are more general than
commuting and weakly commuting mappings. In general, commuting
mappings are weakly commuting and weakly commuting mappings are
compatible but the converses are not necessarily true ([6], [19]}). Sev-
eral authors proved some common fixed point theorems for commuting,
weakly commuting and compatible mappings ({1]-[4], [6]-[8], {10}, [16]-
[20]). Recently, Jungck, Murthy and Cho [9] defined the concept of
compatible mappings of type (A} which is equivalent to the concept
of compatible mappings under some conditions and proved a common
fixed point theorem for compatible mappings of type (A) in metric
spaces and Banach spaces ([9], [12]). In [13], Pathak and Khan intro-
duced the concept of compatible mappings of type (B) and compared
these mappings with compatible mappings and compatible mappings
of type (A) in normed linear spaces. In the sequel, they derived some
relations between these mappings and proved a common fixed point
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theorems of Gregus type for compatible mappings of type (B) in Ba-
nach spaces.

In [11}, T. Kiventidis proved the following:

‘THEOREM A. Let T be a mapping from a complete metric space
(X, d) into itself satisfying the following condition:
(1'1) d(Tx’ Ty) -<- d(xa y) - w(d(x) y))

for all z,y € X, wherew : Rt = [0,00) — Rt is a continuous function
such that 0 < w(r) < r for all r € R* — {0}. Then T has a unique
fixed point in X,

In [15], Ray extended Theorem A by using the concept of commuting
mappings in a metric space as follows:

THEOREM B. Let A4, B and T be mappings from a complete metric
space (X, d) into itself such that AX)UB(X)C T(X), AT =TA, T
is continuous and

(1.2) d(Az, By) < d(Tz,Ty) — w(d(Tz, Ty))

for all z,y € X, where w : Rt — Rt is continuous function such that
0 < w(r) <r forallr : RY — {0}. Then A, B and T have a unique
common fixed point in X.

Very recently, in {17], Rhoades, Tiwary and Singh extended also
Theorem A by using the concept of compatible mappings (cf. Defini-
tion 2.1) in a metric space as follows:

THEOREM C. Let A and B be continuous mappings from a complete
metric space (X,d) into itself. Then A and B have a common fixed
point in X if and only if there exists a continuous mapping T : X —

f(X) N g(X) such that the pairs {A,T} and {B,T} are compatible,
d(Tz,Ty) < max{d(Tz, Az),d(Ty, By),d( Az, By),

%d(Tx, By) + d(Ty, Az)}}

(1.3) — w(max{d(Tz, Az),d(Ty, By), d(Az, By),

%d(f{’:c, By) + d(Ty, Az)]})
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for all z,y € X, where w: Rt — RY is continuous function such that

0 <w(r)<rforallr € Rt — {0}. Indeed, A, B and T have a unique
common fixed point in X.

In this paper, by using the concept of compatible mappings of type
(B) in metric spaces, we give some common fixed point theorems for
four compatible mappings of type (B) satisfying the more general con-
tractive mappings of the Kiventidis type in metric spaces. Finally,
we give also some convergence theorems for self-mappings in metric
spaces satisfying some conditions. Qur main results extend, general-
ize and improve Theorems A, B, C and many others for commuting,
weakly commuting and compatible mappings.

II. Compatible mappings of type (B)

In this section, we introduce the concept of compatible mappings of
type (B) in metric spaces and show that, under some conditions, these
mappings are equivalent to compatible mappings, compatible mappings
of types (A) and (B) in metric spaces. Now, we state some definitions,
examples and propositions for our main results:

DEFINITION 2.1 [6]. Let S and T' be mappings from a metric space
(X, d) into itself. The mappings S and 7' are said to be compatible if
im d(STz,,TSz,) =0
00
when {z,} is a sequence in X such that lim, oo STn = limy oo T2n
=t for some t € X.

DEFINITION 2.2 [9]. Let S and T be mappings from a metric space
(X, d) into itself. The mappings S and 7' are said to be compatible of
type (A) if

lim d(TSxn,SSz,) =0 and lim d(STxn,TT2,) =0

n—ed

when {z,} is a sequence in X such that lim, oo STp = limpsee T2y
=t for some t € X.
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DEFINITION 2.3 {13]. Let S and T be mappings from a metric space
(X, d) into itself. The mappings S and T are said to be compatible of
type (B) if

lm d(STzn,TTzs) < %{ lim d(STz,,St)+ lim d(St,SSza),

nN—0
lim d(TSxn, SSTs) < %{ im d(TSz,,Tt) + lim d(Tt,TTz,)|
n—oo n—Cco n—00

when {z,} is a sequence in X such that lim,—co Szn = iMoo TTn
= ¢ for some t € X.

We give some properties and relations on compatible mappings and
compatible mappings of types (A) and (B) in metric spaces.

PROPOSITION 2.1 [9]. Let S and T be continuous mappings of a
metric space (X, d) into itself. If S and T are compatible, then they
are compatible of type (A).

PROPOSITION 2.2 [9]. Let S and T be compatible mappings of type
(A) from a metric space (X, d) into itself. If one of S and T is contin-
uous, then S and T are compatible.

From Propositions 2.1 and 2.2, we have the following:

PROPOSITION 2.3 [9]. Let S and T be continuous mappings from
a metric space (X, d) into itself. Then S and T are compatible if and
only if they are compatible of type (A).

By suitable examples, Jungck, Murthy and Cho [9] have shown that
Proposition 2.3 is not true if S and T are not continuous.

PROPOSITION 2.4 [13]. Let S and T be compatible mappings of
type (A) from a metric space (X,d) into itself. Then § and T are
compatible mappings of type (B).

PROPOSITION 2.5 [13]. Let S and T' be continuous mappings of a
metric space (X, d) into itself. If S and T are compatible of type (B),
then they are compatible of type (A).

PROPOSITION 2.6 [13]. Let S and T be continuous mappings of a
metric space (X, d) into itself. If § and T are compatible mappings of
type (B), then they are compatible.
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ProPOSITION 2.7 {13]. Let S and T be continuous mappings from

a metric space { X, d) into itself. If S and T' are compatible, then they
are compatible of type (B).

From Propositions 2.4~2.7, we have the following;:

PROPOSITION 2.8 {13]. Let S and T be continuous mappings of a
metric space (X, d) into itself. Then

(1) S and T are compatible if and only if they are compatible of
type (B).

(2) 5 and T are compatible of type (A) if and only if they are
compatible of type (B).

Pathak and Khan [13] gave some examples that Proposition 2.8 is
not true if § and T are not continuous.

PROPOSITION 2.9 [13]. Let S and T be compatible mappings of

type (B) from a metric space (X,d) into itself If St = Tt for some
te X, then STt =TSt = 55t =TTt.

PROPOSITION 2.10 {13]. Let S and T be compatible mappings of
type (B) from a metric space (X,d) into itself. If limp—co STn =
hmy oo T2, =t for some t € X, then

(1) limp, oo 7Tz, = St if S is continuous at t,

(2) limp—oo SSx, = Tt if T is continuous at t,

(3) STt =TSt and St =Tt if S and T are continuous at t.

The following examples which give some relations between compat-
ible mappings of types (A) and (B) are given in [14]:

EXAMPLE 2.1. Let X = [0, c0) be a metric space with the Euclidean
metric space d(z,y) = |z — y|. Define the mappings 5,7 : X — X by

r+z ifze0,3) 1z ifzel0,d)
0 if 2 € (3, 00), 1 if z € (3,00),

respectively. Then § and T are compatible, but they are neither com-
patible of type {A) nor compatible of type (B).
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EXAMPLE 2.2. Let X = [0, co) be a metric space with the Euclidean
metric d{z,y) = |z — y|. Define Sand T: X — X by

stz ifzel0,}) 1-z ifz€(0,})
S(z)=1< 2 ifz =3 T(z)={ 1 ife=1
1 if z € (§,00), 0 if z € (3,0),

respectively. Then S and T are compatible of type (B), but they are
neither compatible nor compatible of type (A).

EXAMPLE 2.3. Let X = [0,00) be a metric space with the Euclidean
metric d(z,y) = |¢ — y|. Define the mappings §, T : X — X by

1+2 ifzelo1) 1-2 ifzel0,1)
S(z)=< 4 ifzx=1 T(x)=4 3 fz=1
0 if z € (1,00), 1 if z € (1,00),

respectively. Then S and T are compatible of type (B), but they are
neither compatible nor compatible of type (A).

EXAMPLE 2.4. Let X =[0,1] be a metric space with the Euclidean
metric d(z,y) = |z — y|. Define the mappings S and T: X — X by

z ifze0,3)
1 ifzel},1],

11—z ifz€[0,3)

Sle) = { 1 ifzefd,1]

1) = {

respectively. Then S and T are not compatible, but they are compat-
ible of types (A) and ({B).

REMARK. We note that the definitions of compatible mappings and
compatible mappings of types (A) and (B) are independent for discon-
tinuous mappings, and the mappings S and 7' in Examples 2.1~2.3
have not a common fixed point in X, but the mappings S and T in
Example 2.4 have a common fixed point 1 in X.
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II1. Common fixed point theorems

Let (X, d) be a metric space. Let A, B, §,T : X — X be mappings
satisfying the following conditions:

(3.1) A(X) C T(X), B(X) C §(X) and

d(Az, By) < max{d(Az,Sx),d{By,Ty), d( Az, Ty),
Sld(4z,Ty) + d(By, S2)]}
- w(max{d(Ax? Sz), d(By: Ty), d(Aa:, Ty)a
Sld(Az,Ty) + d(By, 52)]})

(3.2)

for all z,y € X, where w : Rt — R% is a continuous function such
that 0 < w(r) < r forall r € Rt — {0}.

By (3.1), since A(X) C T(X), for any arbitrary point xo € X, there
exists a point z; € X such that Azg = T'zy. Since B(X) C S(X), for

this point z,, we can choose a point 5 € X such that Bz = Sz2 and
so on. Inductively, we can define a sequence {yn} in X such that

(3.3) {yzn = Txon41 = Azon

Yong1 = Oony2 = BTant1

forn=10,1,2,---.

LEMMA 3.1. Let A, B, S and T be mappings from a metric space
(X, d) into itself satisfying the conditions (3.1) and (3.2). Then

nl-l—lvgo d(yﬂ yYn+1 ) = 03

where {yn.} is the sequence defined by (3.3).

Proof. Let dp = d(yn,Yn+1) for n = 0,1,2,--- . Now, we prove
that the sequence {d,} is non-increasing in Rt, i.e., dy < dp—y for
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n=12.-.By (3.2), we have

dan = d(Y2n,Y2n+1) = d(AZ2a, BZ2n41)
< max{d(Az2n, SZ3a ), d(Bx2n+1,T22n41), d(AT20n, TT2041),

1

E[d(AIZ‘nJ Txon41) + d(BTant1,5T2n)]}

— w(ma.x{d(Aa:gn N 5’.’82"), d(sz,-H.] s T$2n+1 ),
d(Azyn,TTon41),

1
§[d(Aﬂ?2m T22n41) + d(Bt2n+1,5%24)]})
= ma‘x{d(yZﬂ’ Yon—1 )v d(y2n+1 s yZn)s d(y2ns y2n),

1
§d(y2n792n) + d(y2n+l:y2n—1)]}
— w(max{d(yzn, Y2n—1), AY2n+1,¥2n)> d(¥2n, Y2n ),

1
§[d(y2m Yan) + d(Y2nt1, ¥20-1)]})
= ma*x{d(yZa, Yon—-1 )7 d(y2n+1 3 yZn)a

1
5 [d(y2n+1,Y2n) + d(¥2n, Y2n—1)]}
— w{max{d(yzn, ¥zan—1), A(Y2n+1, ¥2n )

1
5 [d(y2n+1,Y2n) + d(Y2n, Y2n-1)1})
1
= max{dan—1, d2n, §(d2n + dan—1)}

1
— w(max{dzn_l,dzn, “’2’(d2n + d2n—1)})‘

If d2p, > dap—3 for any n, then we have dz, < don — w(dan) < dan,
which is a contradiction. Therefore, we have

(35) dgn < dgn_l — w(dg,,_l).

Similarly, we have

(3~6) d2n+1 <don — w(d2n)~
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From (3.5) and (3.6), it follows that, for every n € N, dp41 < dpn —
w(dy ), which implies that

"

Zw(d‘l) $ Z(dz - dt-l-l) — dO - dn+1 < dﬂ'

1=1 =1

Therefore, the series Zfio w(d,) converges and so lim,_,cc w(dy) = 0.
Since {d,} is non-increasing in R, it converges to the limit p. Suppose
that p > 0. Then, since w is continuous, limy, . w(d,) = w(p) = 0,
which is a contradiction and so p = 0. This completes the proof.

LEMMA 3.2. Let A, B, S and T be mappings from a metric space
(X,d) into itself satisfying the conditions (3.1) and (3.2). Then se-
quence {y,} defined by (3.3) is a Cauchy sequence in X.

Proof. By virtue of Lemma 2.1, limp—,co d(Yn, yn+1) = 0. In order to
show that {y,} is a Cauchy sequence in X, suppose that {y2,} is not a
Cauchy sequence. Then thereis an € > 0 such that for each even integer
2k, there exist even integers 2m(k) and 2n(k) with 2m(k) > 2n(k) > 2k
such that

(3.7) d(Yam(k)» Y2n(k)) > €

For each even integer 2k, let 2m(k) be the least even integer exceeding
2n(k) satisfying (3.7), that is,

(3.8) d(Yan(k)s Yam()—2) < €&  d(Yan(r)s Yom(z)) > €
Then for each even integer 2k, we have

€ < d(Yan(k), Yam(k))
< d(Yan(k) Yam(k)—2) + A Y2mky—2: Y2m(k)—1)
+ d(Yam(k)—1> Y2m(k))-

By Lemma 2.1 and (3.8), it follows that

(3.9) d(Yan(k)s Yomx)) — € as k — oo
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By the triangle inequality, we have
Id(yzn(k),yzm(k)—l) - d(y2n(k)vy2m(k))! < d(wm(k)—l 3 y2m(k))v
ld(Yon(x)+1> Y2mik)—1) — (Yan(x)» Yam(x) )]
< d(Yzmk)—1s Y2am(k)) + A Wanck)s Y2n(k)+1)-
From Lemma 2.1 and (3.9), as k — oo,

(3.10) d(yZn(k)y yzm(k)—l) — g d(y2n(k)+17 y?.m(k)-l) — €.
Therefore, by (3.2) and (3.3}, we have
d(Y2n(k)> Y2m(k))

< d(Yan(ky, Yzn(k)+1) + AY2nk)+1: Yam(k))

= d(Y2n(k), Yan(k)+1) + HAT2m k), BTan(k)+1)

< d(yZn(k)a y2n(k)+l) + ma'x{d(Ax2m(k)a Sﬂ”zm(k) ),
d(BTan(k)+1> TZan(k)+1)s HAT2m(k): T2n(k)+1)»
1
§[d(A$2m(k)a Tm2n(k)+l) + d(Bm2n(k)+11 Sx?m(k) )]}

— w(max{d(AZ3m k), ST2m(k) ), A BTank)+1> T Tan(k)+1)s

(3.11) d(AZam(k)> TT2ak)41)>

1

§[d(A$2m(k)>Tx2n(k)+l) + d{BZan(k)+1> ST2my 1)
= d(Yan(ky> Yan(e)+1) + Max{d(Yom(k) Y2am(k)—1)s

d(y2n(k)+1 s y?n(k))7 d(y2m(k) ) y2n(k))a

1

§[d(y2m(k)a Yoa(k)) + d(Yan(k)+1) Y2m(k) 1)1}

— w(max{d(Yam(ky, Yomk)-1)> CY2n(k)+1, Y2n(k) )>

d(Y2m(k)> Yan(k))»

1

E[d(y‘Zm(k)) Yan(k)) T AW2n(k)+1s Y2miry—1)]1})-

Since w is continuous, as & —+ oo in (3.11), from (3.9} and (3.10), it
follows that

1 1
e <0+ max{0,0,¢, 5(6 + €)} — w(max{0,0,¢, 5(6 +6e}) .
=e—w(e) < e
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This means that w(e) < 0, which is a contradiction. Therefore, {yan}
is a Cauchy sequence in X and so {yn} is also a Cauchy sequence in
X. This completes the proof.

THEOREM 3.3. Let A, B, S and T be mappings from a complete
metric space (X, d) into itself satisfying (3.1), (3.2) and the following
conditions (3.12) and (3.13):

(3.12) one of A, B, S and T is continuous,
(3.13) the pairs {A,S} and {B,T'} are compatible of type (B).
Then A, B, S and T have a unique common fixed point z in X.

Proof. By Lemma 3.2, the sequence {y, } defined by (3) is a Cauchy
sequence in X and so, since (X, d) is complete, it converges to a point
z in X. The subsequences {A2,}, {Bxons1}, {S%2.} and {T22n41}
of {y.} also converge to the point z.

Now, suppose that T' is continuous. Since B and T are compatible
of type (B), by Proposition 2.10, as n — oo,

BBzont1, TTzzp41, TBropt1 — Tz
Putting ¢ = 2, and ¥y = T22n41 in (3.2), we have
d(Axgn, Bszn_H)
S ma,x{d(Aa:gn, szﬂ), d(BB$2n+1 ; TBIan.H ),
d(Az2n, TBzony1),
1
(3.14) §[d(A~""2m TBzant1) + d(BBT2nt1, ST2n)] }
- w(max{d(A:vg,,, Sx2n), d(BBmgn.H , TB$2n+1 ),
d(A:L‘Qn, TB.’L‘zn.H ),
1
i{d(szn f TBIL‘zn,;.l) -+ d(BB:E2n+1, S:Egn)]}.
Taking n — co in (3.14), if Tz # 2, then we have
d(z,T2) < max{d(z,z),d(T2,Tz),d(z,Tz),
%[d(z,Tz) + d(Tz,2)]}
— w(max{d(z,z),d(Tz,Tz),d(z,Tz),

%[d(Tz, T2) + d(Tz, 2)]}
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or

d(Tz,2) < d(Tz,2) — w(d(Tz,2)) < d(T'z, z),

which is a contradiction. Thus we have Tz = z. Again replacing z by
Z2n and y by z in (3.2), we have

d{Azyn, Bz)
< max{d(Az2s,S72,),d(Bz,Tz),d(Ar2,,Tz),

1
(3.15) 51d(A®20, T2) + d(Bz, S234)]}
— w(max{d(Az2n, Sz2n),d(B2,Tz), d(Azsn, T2),

1
-Q—{d(Axg,,, T2)+ d(Bz, Sz2,)]}).
Taking n — oo in (3.15), if Bz # 2z, then we have

d(z, Bz) < max{0, d(Bz, z), 0, %d(Bz, 2
— w(max{0, d(Bz, z), 0, -;-d(Bz, 2

or

d(Bz,z) < d(Bz,z) — w(d(Bz,z)) < d(Bz,z),

which means that Bz = z. Since B(X) C S(X), there exists a point
u € X such that Bz = Su = z. By using (3.2) again, we have

d(Au, z) = d(Au, Bz)
< max{d(Au, Su), d(Bz,Tz),d(Au, Tz),

%(a‘(Au, T2) + d(Bz, Su))}
— w{max{d{Au, Su),d(Bz,Tz),d( Au, Tz),
%(d(Au, T2) + d(Bz, Su))})

= max{d(Au, z),0, d( Au, 2), %d(Au, z)}

— w(max{d( Au, 2),0,d( Au, 2), %d(.‘iu, 2)})
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or
d(Au, z) < d( Au,z) — w(d( Au, 2)) < d(Au, z),
which is a contradiction and so Au = 2. But since A and § are com-

patible of type (B) and Au = Su = 2z, by Proposition 2.10, we have
Sz=SAu = ASu = SSu = AAu = Az. By using (3.2), we have

d(Az,z) = d(Az, Bz)
< max{d(Az, Sz),d(Bz,Tz),d( Az, Tz),
%[d(Az, T2) + d(Bz,S2))}
w(max{d(Az,Sz),d(Bz,Tz),d(Az,T%),"

(3.16) 1
Ed(Az,Tz) + d(Bz,52)|})
= max{O, 0, d(AZ, z), %[d(AZ, z) + d(AZ, z)]}
— w(max{0,0,d( Az, z), %[d(Az, z) + d(Az,2)]})
or

d(Az,z) = d(Az,z) — w(d(Az,2)) < d(Az, z),
which is a contradiction and so Az = 2. Therefore, Az = Bz =
Sz = Tz = z, that is, z is a common fixed point of A, B, S and
T. The uniqueness of the common fixed point 2 follows easily from

(3.2). Similarly, we can also complete the proof when A or B or T is
continuous. This completes the proof.

If we put A = B in Theorem 3.3, we have the following:

THEOREM 3.4. Let S and T be continuous mappings of a complete
metric space (X,d) into itself. Then S and T have a common fixed
point in X if and only if there exist a continuous mapping A : X —

S(X)NT(X) such that
(3.17) the pairs {4, S} and {A,T'} are compatible of type (B),
d(Az, Ay) < max{d(Az, Sy), d(Ay, Ty), d(Az, Ty),

1

- w(max{d(Ax, Sy)a d(Ayv Ty): d(Axy Ty))

Sld(dz, Ty) + d(4y, S2)]})

(3.18)
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for all z,y € X. Indeed, A, S and T have a unique common fixed point
in X.

Proof. Since
AXYC S(X)nT(X) C S(X)
AX)Cc S(X)nT(X) C T(X),
from Theorem 3.3, it follows that S and T have a common fixed point
mX.
Conversely, let z € X be a fixed point of S and T, i.e., Sz =Tz =z

and define Az = z for all z € X. Then A is a continuous function from
X into S(X)NT(X). Moreover, we have, for all z € X,

ASz =z, SAr=S5z=2z,

ATz =2, TAz=Tz==z2
and so AS = SA and AT = TA, ie., the pairs A,S and A, T are
commuting. Therefore, the pairs 4,5 and B, T are compatible of type

(A). On the other hand, the condition (3.19) holds also. This completes
the proof.

If we put A= B and S =T in Theorem 3.3, we have the following:

COROLLARY 3.5. Let S be a continuous mapping from a complete
metric space (X,d) into itself. Then S has a fixed point in X if and
only if there exists a continuous mapping A : X — S(X) such that
(3.19) the pair {A, S} is compatible of type (B),

d(Az, Ay) < max{d(Az,Sy),d(Ay, Sy),d(Az, Sy),

%[d(A:c, Sy) + d(Ay, Sz)]}

(3.20) ~ w(max{d(Az, Sy), d( 4y, Sy), d( Az, Sy),

ld(Az, 5y) + d{ 4y, S2)])

for all z,y € X, where w : RY — R' is a continuous function such
that 0 < w(r) < r for all r € R* ~ {0}. Indeed, S and T have a unique
common fixed point in X.

Putting A = I'x (:the identity mapping on X) in Theorem 3.4 and
S = T in Corollary 3.5, respectively, we have the following:
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COROLLARY 3.6. Let S and T be continuous mappings of a com-

plete metric space (X,d) into itself. Then S and T have a common
fixed point in X if and only if

d(z,y) < max{d(z, Sz),d(y,Ty),d(Sz,Ty),

S1d(z,Ty) + d(y, Sz}
w(max{d(z, Sz), d(y, Ty), (S, Ty),

Sld(z, Ty) + d(y, S2)]})

(3.21)

for all z,y € X, where w : Rt — RT is a continuous function such

that 0 < w(r) < r for all r € RY — {0}. Indeed, S and T has a unique
common fixed point in X

COROLLARY 3.7. Let § be a continuous mappings of a complete

metric space (X, d) into itself. Then S has a fixed point in X if and
only if

d(z,y) € max{d(z, Sz),d(y,Sy),d(z,y),

5ld(z,59) + d(y, 52}
— w(max{d(x, Sz),d(y, Sy),d(z,y),

ld(z, Sy) + d(y, S2)}})

(3.22)

for all z,y € X, where w : Rt —» R' is a continuous function such
that 0 < w(r) <r for all r € R — {0}. o

IV. Convergence of self-mappings and fixed points

In this section, by using Theorem 3.3, we give some convergence
theorems for sequences of mappings from a metric space (X, d) into
itself satisfying some condition.

THEOREM 4.1. Let {A,}, {Ba}, {Se} and {T} be sequence of
mappings from a metric space (X, d) into itself such that {A,}, {Ba},
{S.} and {7} converge uniformly to self-mappings A, B, S and T on
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X, respectively. Suppose that, forn = 1,2,--- , z, is a unique common
fixed point of A,, Bn, Sn and T,, and the self-mappings A, B, § and
T satisfy the following condition:

d(Az, By) < max{d(Az, Sy), d(By, Ty), d(Az, Ty),

., %[d{Am,Ty) + d(By, Sz)]}
(4.2) — w(max{d(Az, Sy),d(By, Ty), d(Az, Ty),

%[d(Aa;, Ty) + d(By, Sz)]})

for all z,y € X, where w : Rt — R7 is a continuous function such
that w(r) = ar for all r € Rt — {0} and « € (0,1). If z is a common
fixed point of A, B, § and T and sup{d(z,,z)}} < +oo, then 2z, — z as
n — 0o.

Proof. Let ¢; > 0 for 1 = 1,2. Since {A,} and {S,.} converge uni-
formly to self-mappings A and S on X, respectively there exist positive
integers N, N, such that, for all z € X,

d(Anz,Az) < ¢ for n > Ni,
d(S,z,S8z) < €2 for n > N,

respectively. Choose N = max{N;, N} and ¢ = max{e;,e;}. For
n > N, we have

d(zn,2)

= d(An2n,B2) < d(An2n, Azn) + d(Azy, Bz)

< d(Anzn, Azp) + max{d(Azn, Sz,),
d(Bz,Tz),d(Azn,T7), ~[A(Az,T2) +d(Bz, Sza)]}
— w(max{d(Az,, Sz,),d(Bz,Tz),d( Az, Tz),
%}-[d(flzn ,Tz)+ d(Bz,52,)]})

d(Anzn, Azy) + max{d(Azn, Anzn) + d(Anzn, S2,),0,
d(Azn, Anzn) + d(Anzn, T2),

A

%[d(Azn, Suzn) + d(Snzn, T2)
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+ d(Bz,8u24) + d(Sn2n, Szp)|}

— w(max{d(Azp, Anzn) + d(Anzn,S2,),0,

d(Azn, Anza) + d(Anzn, T2),

1

§[d(Azn, Snzn) + d(Snzn, T'2)

+ d(B2z,502,) + d{Snzn, Sz )]})

= d(Anzn, Azs) + max{d(Ap 2, Azn) + d(Snzp, Sz,),0,

(4.2) d(An2p, Azy) + d(2g, 2), %[d{AnzmAzn) + d(2a, 2)

4+ d(Szn, Snzn) + d(z4, 2)}}

— w{max{d(Apzn, A2,) + d(Snzn, S22),0,

1
A Anzn,A2p) + d(2y,2), §[d(Anzn,Azn) + d(zn, 2)

-+ d(Szna Snzn) + d(zna z)]})
< €+ max{2¢,0, e+ d(zn, z),€ + d(2zn,2)}
— w(max{2¢,0, ¢ + d(zy, 2), € + d(25, 2)})-

From (4.2), if d(z, ) > €, then we have

d(zn,2) < € + max{2¢,0,¢ + d{zn, 2), €+ d(zn, 2)}
— w(max{2¢,0, € + d(2n, 2),e + d(2n, 2)})
= €+ (€ + d(2n, 2) — w(e + d{za,2)).

Since w(t) = ot for all ¢ > 0 and « € (0,1), we have
w(e +d(zn,2)) = afe+ d(2n,2)) < 2¢

or

9% _
d(2n,2) < Y

Then letting o — 17 in (4.2), it follows that ¢ < d(z,,2) < ¢, which
is a contradiction. Therefore for n > N, d(zn, 2) < €. This means that
{zn} converges to z. This completes the proof.

Similarly, we have the following:
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THEOREM 4.2. Let {An}, {Bn}, {S.} and {T,.} be sequences of
mappings from a metric space (X, d) into itself satisfying the following
condition:

d(Anz, Bny) < max{d{Apz, B,z),d(Bny, Ty),

d(An2, Ty), 31d(An2, Ty) + d(Bay, 52)]}

(4.3) — w(max{d(Anz, Bpz),d(Bpy, Ty),

d(An, Ty), 51d(An2, Ty) + d(Bay, S2)})

for all z,y € X, wherew : Rt — R7 is a continuous function such that
w(r) = ar for all r € R* — {0} and a € (0,1). K {A4,}, {Ba}, {Sn}
and {T,} converge uniformly to self-mappings A, B, S and T on X,
respectively, then A, B, § and T satisfy the condition (4.1). Further,
the sequence {zp} of unique common fixed point z, of A,, By, Sn and
T, converges to a unique common fixed point z of A, B, S and T if
sup{d(zn,2)} < +o0.
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