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THE BOOK-SHORE TYPE LAW OF A GAUSSIAN
PROCESS WITH STATIONARY INCREMENTS

Yong KaB CHol

1. Introduction and results

Let ar (0 < T < co) be a nondecreasing function of T' for which
G) 0<ar<T,
(i) T/ar is nondecreasing,.

For instance, we can choose ar as 1, log T, T%,(0 < 6§ < 1), T/(log T,
(0 <r <oo)and ¢T (0 < ¢ < 1), ete.

Under these conditions on ar, Csoérgd and Révész [4] obtained the
following theorem for a standard Wiener process {W(t);t > 0}:

THEOREM A. If ar (0 < T < oo) satisfies the conditions (i) and
(i), then

Wt +ar) - W(H)| _

1.1 lim su su 1 a.s.
(1) T-»oopogngp—aT Bry/ar
and
L4¢: — Wit}
limsup sup Sup Wit +s) - W =1 a.s.

Teoo 0<s<ar 0<t<T—ar Br/fer

where Br = \/2{log(T/ar) + loglog T'}. If, in addition, we have also
(iil) limp—c{logT —logar}/loglogT = oo,
then we have

W(t +ar) =W _|

1.2 lim su a.s.
( ) T—»ooosgsgP_aT ﬂT A% aT
and w Wit
t —
lim  sup sup Wit + ) ()l =1 a.s.
T—o0 p<a<ay 0<t<T—~ar ﬁT\/ aT

On the other hand, Book and Shore [1] extended the result (1.2) of
the above Csorgo-Révész theorem as follows:
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THEOREM B. Ifar (0 < T < o0) satisfies the above conditions (i),
(ii) and further

(i) limr—co{logT —logar)/loglogT =7, 0<r <0,

then
liminf sup (Wt + o) - Wt)| = il a.s.
T—00 9<t<T—ag Br+/ar Vitr

For the standard Wiener process {W(#);¢ > 0}, the Strassen’s law
of iterated logarithm in {6] implies that for any 0 < ¢ <1

. |W(t + cT) — W(2)|
1.3 Hm su 8 =
( ) T—)oop Oﬁtgl'.‘l'l’)—cT V2e log Iog T

1 a.s.

For 0 < ¢ < 1if we set ar = ¢T in (1.1), we get the result (1.3).
Clearly, ar = ¢T(0 < ¢ < 1) fails to satisfy the condition (iii) of
Theorem A, but it satisfies the condition (iii)’ of Theorem B. Thus
the Strassen’s law of iterated logarithm is complemented as follows:

hminf sup PG D) =WH
T—o0 9<t<T—cT Vv2cloglogT

0 a.s.

We are going to extend Theorems A and B to a Gaussian process
with stationary increments. Let {X(t) : 0 < ¢ < oo} be a almost
surely continuous Gaussian process with X(0) = 0, E{X(¢)} = 0 and
* stationary increments: E{X(t) — X(s)}? = o?(|t — s|), where o(y) is
a function of y > 0 (for example, if {X(¢): 0 <t < oo} is a standard
Wiener process, then o(¢) = +/f). Further assume that o(t), t > 0, is
a nondecreasing continuous, regularly varying function with exponent
4(0 < ¥ < 1) at infinity {or zero). A positive function ¢(t), ¢ > 0, is
said to be regularly varying unth ezponent v > 0 at a{a = oo or Q) if,
for all z > 0, one has

. g(zt)
hm = z7,
t—e g(t)

Let us define continuous parameter processes X;(T),X2(T"), ---,
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Xs(T) by

Xl(T) = sup sup |X(t + 'S} h X(t)l ,
0<s<ap 0<I<T—s Bro(ar)

Xo(T) = sup sup Xt +s) = X(t)
0<s<ay 0<t<T—s  Pro(ar)

X3(T) = sup sup [X(t+s) - X(®) ,
0<s<ar 0<t<T—ar Bro(ar)

X +s)—- X&)

Xi(T)= sup sup

0<s<ar 0<t<T~ay ﬁTU(aT)
Xs(T)=  sup |X(t + ar) ~ X(2)]

0<t<T—ar Bro(ar)
Xs(T) = sup X(t + aT) — X(t)

0<t<T—ar Bro(ar)

respectively. Clearly, X;(T) is the largest process and X¢(T) is the
smallest one of all X,(T),z=1,...,6.

In this paper we shall investigate almost sure limiting values of
X.(T),:=1,2,---,6, under varying conditions on ar. Thus we are
concerning only with behavior of functions near at infinity. We often
use the letter ¢ for a positive absolute constant which may be different
from line to line if necessary.

The following theorem is an extension of Theoren A to a Gaussian
process, which is proved in Cséki et al. [3] and Choi {2].
THEOREM C. Let ar be a nondecreasing function of T' such that
(1) 0<ar< T’
(il) T/ar is nondecreasing.
Let the Gaussian process {X(t);0 < t < oo} in the above statements
satisfy the condition which for anya < b <c¢<d

i) E((X(5) - X(@))}X(d) - X(c))} <.

Then
hmsup X, (T) =1, a.s.,
T—oo
wheret = 1,2,--- ,6. Moreover, if we have also

(iv) limr_eo(logT —logar)/loglogT = oo
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and if either the condition (ii1) it holds or
(v) o%(t) is twice continuously differentiable which
satisfies
()] € ea®(t)/t?, t>0,

where ¢ is a positive constant, then
(1.4) lim X,(T)=1, a.s.,
T—o00

where: =1,2,--- ,6.

Note that the condition (iv) of Theorem C' is satisfied in cases
of ar = 1, (loglogT)? (0 < B < o0), (logT)? (0 < B < o) and
Tlog T)*(0 < 8 < 1, —00 < a < o), etc. But in case of ay =
T/(logT)" {0 < r < 00), it is not satisfied. Thus we investigate this
case:

THEOREM 1. Let ar be a nondecreasing function of T' such that
(1) 0 <ar <T/(logT) for all 0 < r < o0,
(i) T/ar is nondecreasing.

Assume that the above Gaussian process {X(t);0 < ¢t < oo} satisfies
the condition (iii) of Theorem C. Then

. ’ r
l%lolif _X,(T) 2 i—~|-;’ a.s,

where 1 = 1,2,--- ,6.

The following theorem complements its lack for gaps in 7'/(log T)"
<ar <T,0<r < oo and exactly yields the "liminf” value. Theorem
2 is an extension of Theorem B for Wiener processes, and it gives the
same value as the result (1.4) of Theorem C only when r = co in
Theorem 2. Theorem 1 also needs to prove Theorem 2.

THEOREM 2. Let ar be a nondecreasing function of T' for which
(i) 0<ar £T,

(ii) T/ar is nondecreasing,

(ii1) limp oo (logT —logar)/loglogT =r, 0<r < oo.
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Assume that the above Gaussian process {X(¢);0 < t < oo} satisfies
the condition which, for t > 0,

(iv) o(t) =tY, 0<y<1/2

Then we have
T

147
wheret=1,2,... ,6ifr>0,and2=1,3,5ifr=0.

a.s.,

ligglian,(T) =

We note that the condition (iii) of Theorem C' is weaker than that
{(iv) of Theorem 2, but the condition (iii) of Theorem 2 contains that
{(iv) of Theorem C.

2. Proofs

For proving our Theorem 1, we shall make use of the following
lemma:

LEMMA 1 (Slepian [5]). Suppose that {X, : ¢ = 1,2,... ,n} and
{Y,:i=1,2,... ,n} are jointly standardized normal random variables
with

covariance (X,, X,) < covariance (1,,Y;), i# 3.

Then for any real number u,,,

P{X, <un;r=12,...,n} < P{Y, <un;y=1,2,... ,n}.

Proof of Theorem 1. Considering the order of magnitude of X,(T'),
t=1,2,...,6, it suffices to prove )

-
1+7r

liqlp inf Xe{T) >

For given T > 0 large enough, let us define a positive integer ny by
np = {T/ar] where [y] denotes the greatest integer not exceeding y. By
the assumption (i) of ar, the integers ny are increasing and ny — 00
as T — oo. For j =1,2,... ,n7, define incremental random variables

%r(5) = X(ar) - X((5 — Dar).
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From the condition (iii) it follows that for ¢ # j
covariance (Zr(1), Zr(j)) < 0.

Applying Lemma 1 for X; = Z¢(j)/o(ar), j = 1,2,... ,n7, we have
forany0<e<1

P{Xs(T) < /(1 — /(1 +7)}
X(t+a7p)— X(8)
N P{ostssl:lrp—ar G(ZT) < uT}

Zp(J)
<P —_—
{ o Shmy <ur}

< {@(ur)}™

where ur = /(1 - €)r/(1 + r)/2{log(T/ar) + loglog T} and ®(-)
denotes the standard normal distribution function. Since, for large T

{®(ur)}"" < exp(—c{(T/ar)log T}~ U= /04y,
we have

P{Xs(T) < /(1 — e)r/(1 + 1)} < exp(—c(log T)*").

Let 0 < o < 1 and set Ty = exp(k®),k € N, where N is a set of
positive integers. Then the above inequality yields

P{Xs(Ty) < /(1 —€)r/(1 + 1)} < exp(—ck®™).

Using the Borel-Cantelli lemma, we obtain

r
1+r

For given T4, let T be in Ty < T < Tk41, £ € N. Then by the similar
techniques as in the proof of Lemma 4.6 of Choi [2], we have

liminf X(T) > liminf Xs(Ty)  as.
T—00 k—o0

a.s.

lim inf Xg(Te) >

This proves Theorem 1.

In proving Theorem 2 we shall use a form of the modulus of conti-
nuity for Gaussian processes {(cf. Lemma 2), which is an extension of
Lévy’s modulus of continuity for Wiener processes.
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LEMMA 2 [3]. (Moduli of continuity for a Gaussian process)
Assume that the condition (iii) of Theorem C holds. Then

_ X(u+h)— X(u)
2.1) AT Y mercy A TR

| X (u+h)— X(u)|

2.2 Ii =1,
(22) f:%logqs;?])-h v/2log(1/h)o(h)
. X(u +v) — X(u)
2.3 i =1
(2.3) b0 oSueh o<usi—h v/2log(L/Ma(h)
2.4) " e sup s [X{u+v) - X(u)|

=1,
k10 p<u<hocu<i—r 1/ 2log(1/R)o(h)
) X(u +v)— X(u)

25 1 -1,
(2:5) b0 02ueh 0<as i —h' r/2log(1/R)a(h)

. |X(u + v) = X(u)]

2.6 lim =1

(26) b0 o Sveho<uss v \/2log(1/R)o (k)

hold almost surely, where 0 < b! < h < 1.

The proof of Theorem 2 applies the similar techniques as the proof

of Book-Shore (1].

Proof of Theorem 2. When r = oo, we have already proved in Theo-
rem C. The only part of the proof is the “liminf” part when 0 < r < .
Since a7 /T is nonincreasing, either ap/T — Oor ap/T — (0 <6 £ 1)
as T — oo. First suppose the case ar/T — 6§(0 < § < 1). Then
ap 2> 6T for all large T, and we must be in a case when r = 0 because

in the condition (ii1)

o<t OET/aT) _ | log(1/e) _
T—co loglogT — T—eologlogT

Let us denote U(?) 4 V(t) if U(%) has the same distribution as V{(#).

By the condition (iv),

olar)X(t/ar) 1 X(t).
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Thus, in case X;(T'), we have

0 < X, (T)
| X (2 +s) ~ X(2)|

= sup sup
0<s<ar 0<t<T—s v/ 2(log(T/ar) + loglog T)o(ar)
L sup o(ar)| X ((t + s)/ar) — X(t/ar)]

0<s<ar 0<t<T—s \/2(log(T/ar) + loglog T)o(arT)
e sup X (g 4 p) ~ X(q)|

0<p<10<g<(T/az)—p / Alog(T/ar) + loglog T)

|X(g + p) — X(g)|

< su su

02781 0<e<(TSar)—p  VZIOBIOE]

| X(q + p) — X(9)|

< sup sup

0<p<io<g<(1/6)—p V2loglogT

— a.s.,

as T — oo by the a.s. continuity of Gaussian process. So X1(T) — 0in
probability as T — oo and hence there exisls a subsequence {T} : 1 <
% < oo} such that X;(T}) converges almost surely to zero as k — 0.
It follows that

bminf X1(T)=0  as.
T—oo

Also X3(T) and X5(T') are proved by the same way as X1(7"). In the
remainder of the proof, we shall consider only the case when ar/T — 0
as T — oo. Then there are two cases : r > 0 or r = (. First consider
* the case r > 0. This does not imply ar/T — § for some § > 0, and the
ar’s in this case are contained in the set {ar : 0 < ar < T/(logT)",
0 < r < co}. Thus from Theorem 1

>
147’

27  lmifX(T) 2 =1,2,---,6, as.

Now let us prove

liminf X,(7T) < , t=1,2,...,6, a.8.
T—00 1



Book-Shore type law of Gaussian process 31

Set By = /T + {loglog7/log(T/ar)]. Then By — /(I 1+ r)/r as

T - oo by the condition (iii). Since o(T)X(t/T) 2 X(t), we have, in
case Xo(T),

X2(T)
— s su X(t+s)—X(t)
05351::11 05:5;1)‘-3 /2log(T/ar)Bro(aT)
< My(T)

(2.8)

o s COUX(E +S)/T) X))

" 0<s<aro<t<T-s  \/2log(T/ar)Bra(ar)

L L X(G/T)+(5/T)) ~ X(/T)
0<s/T<ar /T 0<t/T<1~s/T +/210g(T/or)Bro(ar/T)

Because we are in the case h = ar/T — 0 as T — oo, we have, from

Lemma 2 ((2.3) or (2.5))

lim su su Huto)— Xu)
MO 0<vh 0<ugiov +/2Tog(1/h)o(h)

Thus in (2.8)
T

This implies that

] T . .1
711_1};0 X2(T) = 4 fm in probability.

Therefore we can find a subsequence {7} : 1 < k < oo} such that

T

kli’ﬂ;o Xz(Tk) = 147 a.5
Thus

im i < .8.
(2.9) hTrriior;sz(T) <ViTs a.s
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By (2.7) and (2.9), we have
T
1+r
Also, as for the others X,(T), 2 = 1,3,4,5,6, it is easily proved by the
same method as X3(T). Consider the next case when r = 0. Clearly,
(2.10) liminf X,(T) >0, :=1,3,5, a.s.
T—ooo

liq{niang(T) = a.s.

If we define § = oo, then by the same method as above, we can deduce
lim M,(T)=0, i=1,3,5, a.s.
T—oo
and
(2.11) liminf X,(T) <0, ¢=1,3,5, a.s.
T—oo

By (2.10) and (2.11) we have, for r =0,
iminf X,(T) =0, :=1,3,5, a.s.
T-+oo

Thus the proof is complete.
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