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THE BOOK-SHORE TYPE LAW OF A GAUSSIAN 
PROCESS WITH STATIONARY INCREMENTS

Yong Kab Choi

1. Introduction and results
Let (0 < T < oo) be a nondecreasing function of T for which

(i) 0 <aT <T.

(ii) T/ar is nondecreasing.

Fo호 instance, we can choose ar as 1, logT, Te(0 < 0 < 1), T/(logT)r, 

(0 < r < oo) and cT (0 < c < 1), etc.

Under these conditio교s on Csorgo and Revesz [4] obtained the 

following theorem for a standard Wiener process {W(t); t > 0):

THEOREM A. If GJ1 (0 < T < oo) satisfies the conditions (i) and

(ii), then

(1.1) lim sup sup
T—^oo 0<t<T—ay

|W(t + aT)-W)l 1
--------- -—1 a.s.

6t、何f
and

IW + s) — W(圳 
—jl a. s •lim sup sup sup  

T—>8 ay PT

where 跖、=^/2(log(T/a7') + log log T). If, in addition, we have also

(iii) limuooUog? - log ar}/log logT = oo, 

then we have

I c、 v \W(t + aT)-W(t}\ .
(1.2) lim sup ----- -———----- = 1 a.s.

T-^oo0<z<T_aT PTy/^T

and
IW + ^)-W)l 1

lim sup sup ---- -———=---- =1 a.s.
끄-사8 0<3<aT Q<t<T-aT &T、/而

On the othe호 hand, Book and Shore [1] extended the result (1.2) of 

the above Csorgo-Revesz theorem as follows:
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THEOREM B. If aT(0 < T < oo) satisfies the above conditions (i),

(ii) and further

(iii)'  lim”나8(k)g T 一 log ar)/log log T = r, 0 < r < oo, 

then

lim inf sup
꼬一HR Q<t<T~aT

— W(圳
a.s.

For the standard Wiener process {W(t);t > 0), the Strassen5s law 

of iterated logarithm in [6] impEes that for any 0 < c < 1

(1.3) lixnsup sup 网"驾(圳=1 

7—8 0<t<T-cT y2c log log T
a，.s.

For 0 < c < 1 if we set ay = cT in (1.1), we get the result (1.3). 

Clearly,印厂=cT(0 V c V 1) fails to satisfy the condition (iii) of 

Theorem A, but it satisfies the condition (iii)' of Theorem B. Thus 

the Strassen5s law of iterated logarithm is complemented as follows:

lirninf sup 四버片)「切 = 0
?T8 o<t<r-cT y2c log log T

a.s.

We are going to extend Theorems A and B to a Gaussian process 

with stationary increments. Let {X(£) : 0 < t < 00} be a almost 

surely continuous Gaussian process with X(0) = 0, E{X(t)} = 0 and 

stationary increments: E{X(t) — X(s)}2 = a2(|t — s|), where cr(y) is 

a function oi y >0 (for example, if {X(£) ： 0 < t < 00} is a standard 

Wiener process, then cr(f)= 折).Further assume that a(t), t > 0, is 

a nondecreasing continuous, regularly varying function with exponent 

7(0 < 7 < 1) at infinity (or zero). A positive function g(t), t > 0, is 

said to be regularly varying with exponent 7 > 0 at a (a = 00 or 0) if, 

for all x > 0, one has

lim嘤=
—a g(t)

Let us define continuous parameter processes Xi(T)^X2(T).) • • •,
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X6(Z) by

m |X(t + s) — X(圳
Xi(7) = sup sup -----—"t---- ,

0<s<aT 0<t<T-s 까、")

A2(jI ) = sup sup ------
0<s<aT흐—$

|X(t + s) —X(圳
X3(T)= sup sup

0<s<aT 0<t<T-aT Pt히、a，T)

x(i + s) - x(t)
X4(7) = sup sup (

0<s<aT 0<t<T-aT Pt叭5 )

|X(t + a，r) —X(圳
$如(虹、) '

邳+ 旳)一X(t)

0Tb(、CLT) ，

X5(T) = sup
0<t<T—ar

X601) = sup
0<t<T-aT

respectively. Clearly, X±(T) is the largest process and X^(T) is the 

smallest one of all XJT), z = 1,... ,6.

In this paper we shall investigate almost sure limiting values of 

Xt(T), i = 1,2, ••- ,6, under varying conditions on(叮, Thus we are 

concerning only with behavior of functions near at infinity. We often 

use the letter c for a positive absolute constant which may be different 

from line to line if necessary.

The following theo호em is an extension of Theoren A to a Gaussian 

process, which is proved in Csaki et al. [3] and Choi [2].

THEOREM C. Let qt be a nondecreasing function of T such that

(i) 0 <aT <T,

(ii) T/ar is non decreasing.

Let the Gaussian process {X(£);0 < t < oo} in the above statements 

satisfy the condition which for any a < b < c < d

(iii) E{(X(6) — X(a))(X(d) - X(c))} < 0.

Then

limsupXz(幻 =1, a.s.,
T—»-oo

where z = 1,2, ••- ,6. Moreover, if we have also

(iv) limcj8(log T 一 log «r)/log log T = oo
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and if either the condition (iii) it holds or

(v) a2(t) is twice continuously diikrentiable which 

satisfies

|(b%))〃| < 8%)"2, t > 0,

where c is a positive constant^ then

(1.4) Jim X(T) = 1, a.s.?

where z = 1,2, ••- ,6.

Note that the condition (iv) of Theorem C is satisfied in cases 
of ay = 1, (log log T)^ (0 V 0 V oo), (log T)^ (0 < /3 < oo) and 

T^(logT)a (0 < 0 < 1, —oo < a < oo), etc. But in case of ar = 

T/(logT)r (0 < r < oo), it is not satisfied. Thus we investigate this 

case:

THEOREM 1. Let (叮 be a nondecreasing function of T such that

(i) 0 < ar < T/(logT)r for allO < r < oo,

(ii) T/ar is nondecreasing.

Assume that the above Gaussian process {X(t);0 < i < oo} satisfies 

the condition (iii) of Theorem C. Then

唳xinfXJW 시, a.s,

끄T8 y1 + r

where z = 1,2, ••- ,6.

The following theorem complements its lack for gaps in T/(log T)r 

<ar^Ty0<r<oo and exactly yields the "liminf” value. Theorem 

2 is an extension of Theorem B for Wiener processes, and it gives the 

same value as the result (1.4) of Theorem C only when r = oo in 

Theorem 2. Theorem 1 also needs to prove Theorem 2.

THEOREM 2. Let ar be a nondecreasing function of T for which

(i) 0 V S "

(ii) T/ar is nondecreasing,

(iii) lim?—8 (log T — log ay)/ log log T = r, 0 < r < oo.
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Assume that the above Gaussian process {X(i); 0 < i < 00) satisfies 

the condition which, for t > Q,

(iv) a(t) = f7, 0 < 7 < 1/2.

Then we have ______
lim inf-Yt(T) = J ―-— a.s.,
~8 v 7 y 1 + r

where z = 1,2,... ,6 if r > 0,旳d z = 1,3,5 if r = 0.

We note that the condition (iii) of Theorem C is weaker than that

(iv) of Theorem 2, but the condition (iii) of Theorem 2 contains that

(iv) of Theorem C.

2. Proofe

For proving our Theorem 1, we shall make use of the following 

lemma:

LEMMA 1 (Slepian [티). Suppose that {Xz : i = 1,2,, n} and 

{匕:i = 1,2,... ,n} are jointly standardized normal random variables 

with

covariance (Xz^Xj) < covariance (匸)匕), i j.

Then for any real number un,

P{X? — 1,2,...< P{Yj，으 ] = 1,2)...)n}.

Proof of Theorem 1. Considering the order of magnitude of Xt(T\ 

i = 1,2,... , 6, it suffices to prove '

1耙끵%(/)2店三 a.s.

For given T > 0 large enough, let us define a positive integer by 

nx = [T/ay] where [y] denotes the greatest integer not exceeding y. By 

the assumption (i) of tzr, the integers tit are increasing and ny t 8 

as T —> 00. For j = 1,2,... , 丫町、define incremental random variables

ZEj) = X(jaf) — X(。一 1)妃).
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From the Condition (iii) it follows that for z / J

covariance (Zr(i), Zr(j)) < 0.

Applying Lemma 1 for X3 = ZT(J)/a(ar), j = 1,2,... we have 

for any 0 < e < 1

尸{X6(T) < V(1 - e)r/(l + r)}

p J X(t + ar) _ X(£)
—P\ SUp ------ ;一一r-----  < UT

I 0<t<T-aT 끼«叮)

< p{ sup 罕이 V&「}
I 끼、a" J

< {以搭jg

where ut = ^/(l — e)r/(l + r)y/2{log(T/aT)+ log log T} and 臥.) 
denotes the standard normal distribution function. Since, for large T

< exp(—cKT/边)log너一&t),

we have

尸{XH幻 V y/(r^e)r/(l+r)) < exp(-c(logT)€r).

Let 0 < a < 1 and set Tk = exp(A:a), k E M where IV is a set of 

positive integers. Then the above inequality yields

P{X.(Tk) < V(l-e)r/(l+r)} < exp(T迎质)

Using the Borel-Cantelli lemma, we obtain

liminf J¥6(Tfe) > J三— a.s.

k—8 y 1 + r

For given let T be in Tk < T < k C N. Then by the similar 

techniques as in the proof of Lemma 4.6 of Choi [2], we have

liminfX6(T) > liminf X6(耳) a.s.
T—>8 k—>8

This proves Theorem 1.

In proving Theorem 2 we shall use a form of the modulus of conti

nuity for Gaussian processes (cf. Lemma 2), which is an extension of 

Levy's modulus of continuity for Wiener proces융es.
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LEMMA 2 [3]. (Moduli of continuity for a Gaussian process)

Assume that the condition (iii) of Theorem C holds. Then

C r X(16 +/i) — X(ti)
(2.1) lim sup —'•==丄 — '、= 1,

应。0<u<l-h、/21og(l/")(기:")
z9 r |X(” + 久)一 X(u)|
(2.2) lim sup ———■一」스 = 1,

姒。o<u<i-fc ^/2Iog(l/h)a(h')

(2.3) lim sup sup 马竺끄^H = i,
Q<v<hQ<u<l-h \/2 log(l/h)b(h)

心 -r |X(lC—X(u)| 1
(2.4) lim sup sup ——l- '____ = 1,

h]。0<v<hQ<u<l-h 5/21og(l/7z)<T(h)

论氏、 r X(t« +1?) — X(te)
(2.5) lim sup sup —,   = 1,

^io Q<v<h o<u<i-hf -^/2 log(l/h)a(h)

nr r 闵0 + 少)一 X(u)|

时。o<v</io<u<i-fe, y 21og(l//i)(T(7z)

hold almost surely, where Q < h1 < h < 1.

The proof of Theorem 2 applies the similar techniques as the proof 

of Book-Shore [1].

Proof of Theorem 2. When r = oo, we have already proved in Theo

rem C. The only part of the proof is the ££liminf, part when 0 < r < oo. 

Since a^/T is nonincreasing, either aq^/T ―> 0 or ar/T < 8 <V) 

as T —oo. First suppose the case a^/T —> 5(0 < ^ < 1). Then 

5 2 8T for all large T, and we must be in a case when 尸=0 because 

in the condition (iii)

lim 毕毕끠
「T8 log log T

0 <
< lim 怦g의 = 0.

T—8 log log T

Let us denote U(t) 으 V(t) if U(t) has the same distribution as V(f). 

By the condition (iv),

b(az)X(t/旳)=X(t).
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Thus, in case Xy (T), we have

0 < X0)

f |X0 + s)—X(圳
= sup sup —j ——■ ■ -- - —■二^-------

o<s<aT o<t<T-s -y2(log(T/aT)+ log log T)a(aT)

으 su su cr(aT)|X((t + s)/ar) - X("r)|

o<s<aT o<t<T-s 5/2(log(T/aT)+ log log T)cr(ar)

|X(g+p) — X(q)|
= sup sup —j---- --  —=

0<P<l 0<q<(T/aT)-p V2(log(T/aT) + log log T)

|X(g+0)— X(g)|
< sup sup --- -=====—

0<p<l 0<g<(T/ar)-p l/2 log log 끄
|X(g + p) —X(q)| c

< sup sup --- -======---- > 0 a.s.
0VpV고 0<g<(!/6)-p v2 log log T

as T —> oo by the a.s. continuity of Gaussian process So Xi(T) ―> 0 in 

probability els T —> oo and hence there exists a subsequence {Tk : 1 < 

k V oo} such that Xi(Tk} converges almost surely to zero as A: —> oo. 

It follows that

liminf _Yi(T) = 0 a.s.
7*—>8

Also X*T) and A*5(T) are proved by the same way as Xi(T). In the 

remainder of the proof, we shall consider only the case when ay/T 0 

as T —> 8. 모hen there are two cases : r > 0 or r — 0. First consider 

the case r > 0. This does not imply clt/T t 8 for some > 0, and the 

in this case are contained in the set {ay : 0 < T/(logT)r, 

0 < r < oo}. Thus from Theorem 1

(2.7) Inn inf Xt(T)> , i = 1,2,••- ,6, a.s.

Now let us prove

liminf A"Z(T) < 4/7——, z — 1,2,... ,6, a.s.

T—»-oo — V 1 + 尸
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Set Bt = 5/1 4 {loglogT/log(T/a^)). Then Br t >/(l + r)/r as 

꼬 一> 00 by the condition (iii). Since a(T)X(t/T) 으 X(£))we have, in 

case X2(T),

X2（幻

=sup sup
0<s<aT《꼬

X(t + s) — X(t) 

、]2 log(? / 如(a?)

(2-8)
으 M2(T)

：=sup sup b3){/X3 + s)/? — X(")} 

0<s<aT 0<t<T-s y/2 log(T/aT)BT^(«T)

='sup sup x(y/T)+(*))-x(也

^<s/T<aT/TQ<t/T<l~s/T \/2Iog(7/旳)一伊厂히0技丁)

Because we are in the case h — a^/T 0 as T too, we have, from 

Lemma 2 ((2.3) or (2.5))

lim sup sup 呉士上.X(으) = ] 心. 
fti° o<v<ho<u<i-v y 21og(l/h)cr(/i)

Thus in (2.8)

離/") a.s.

This implies that

Jim X2(T) = y ] ； in probability.

Therefore we can find a subsequence {Tk : 1 < A: < 00} such that

鬼 X2(% = \/n a..s.

Thus

(2.9)
liminfX2(T) < 丄卩一 
T-oo ' " V 1 + r

a.s.
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By (2.7) and (2.9), we have

嚥悪X«)=応 a.s.

Also, as for the others Xt(T\ i = 1,3,4,5,6, it is easily proved by the 

same method as X2(7). Consider the next case when「= 0. Clearly,

(2.10) lim inf Xt(T) > 0, i = 1,3,5, a.s.
T—*-oo

If we de血le | = oo, then by the same method as above, we can deduce

and

lim M,(T) = 0, 
T—»-oo

z = 1,3,5, &s*

(2.11) InniafX(T) < 0, i = 1,3,5, a.s.

By (2.10) and (2.11) we have, for r =0,

1郭 inf X0) = 0, i = 1,3,5, H.S.

Thus the proof is complete.
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