An Improved Theoretical Model to Explain Electronic and Optical Properties of p-Type GaAs/AlGaAs Superlattices for Multi-Wavelength Normal Incidence Photodetectors

  • Published : 1997.01.31

Abstract

We extend our previous theoretical analysis of electronic and optical properties of p-type quantum well structures based on the two heavy- and light-hole system to include all the three valence bands. These theories are then used to clarify the origin of the normal incidence absorption and photo current at photon wavelengths of 2 - 3 ${\mu}m$, which was observed in addition to the absorption around 8 ${\mu}m$ by a recent experimental investigation with heavily doped p-type GaAs/AlGaAs multi-quantum well (MQW) structures. In the theoretical analysis, the Hartree and exchange-correlation many-body interactions are taken into account within one-particle local density approximation, and it is shown that normal incidence absorption occurs in two wavelength regions over the transition energy range higher than barrier height for p-type GaAs/AlGaAs superlattices with well doping of $2{\times}10^{19}\;cm^{-3}$; one region has broad absorption peaks with coefficients of about 5000 $cm^{-1}$ around 8 ${\mu}m$, and the other has two rather sharp peaks at 2.7 ${\mu}m$ and 3.4 ${\mu}m$ with 1800 $cm^{-1}$ and 1300 $cm^{-1}$, respectively. The result indicates that the theory explains the experimental observation well, as the theoretical and experimental results are in close agreement in general absorption features.

Keywords

References

  1. Phys. Rev. B v.39 Chang, Y.C.;James, R.B.
  2. J. Appl. Phys. v.72 Teng, D.;Lee, C.;Eastman, L.F.
  3. Appl. Phys. Lett. v.59 Xie, H.;Katz, J.;Wang, W.I.
  4. J. Appl. Phys. v.71 Xie, H.;Katz, J.;Wang, W.I.
  5. Appl. Phys. Lett. v.61 Chen, H.H.;Houng, M.P.;Wang, Y.H.;Chang, Y.C.
  6. Appl. Phys. Lett v.61 Man, P.;Pan, D.S.
  7. Inst. Phys. Conf. Ser. no.136 GaAs and Related Compounds 1993 Kim, B.W.;Majerfeld, A.
  8. Proceedings of the First International Symposium on Long Wavelength Infrared Detectors, 184th Electrochemical Society Metting Majerfeld, A.;Lu, J.H.;Kim, B.W.;Mao, E.;Dickey, S.A.;Oh, E.G.
  9. J. Appl. Phys. v.77 Kim, B.W.;Majerfeld, A.
  10. Appl. Phys. Lett. v.59 Levine, B.F.;Gunapala, S.D.;Kuo, J.M.;Pei, S.S.;Hui, S.
  11. Appl. Phys. Lett. v.61 Park, J.S.;Karunasiri, R.P.G.;Wang, K.L.
  12. J. Appl. Phys. v.71 Gunapala, S.D.;Levine, B.F.;Ritter, D.;Hamm, R.;Panish, M.B.
  13. NANOSTRUCT '96 Mao, E.;Dickey, S.A.;Kim, B.W.;Majerfeld, A.;Melliti, R.;Tronc, P.
  14. ICMOVPE '96 Mao, E.;Dickey, S.A.;Kim, B.W.;Majerfeld, A.
  15. Phys. Rev. v.140 Kohn, W.;Sham, L.J.
  16. J. Phys. C v.4 Hedin, L.;Lundqvist, B.I.
  17. Phys. Rev. B v.32 Chang, Y.C.;Sanders, G.D.
  18. Appl. Phys. Lett v.53 Bandara, K.M.S.Y.;Coon, D.D.;Byungsung, O.;Lin, Y.F.;Francombe, M.H.
  19. J. Appl. Phys. v.66 Bloss, W.L.
  20. Appl. Phys. Lett. v.56 Choe, J.W.;Byungsung, O.;Bandara, K.M.S.V.;Coon, D.D.
  21. Phys. Rev. B v.43 Manasreh, M.O.;Szmulowicz, F.;Vaughan, T.;Evans, K.R.;Stutz, C.E.;Fischer, D.W.
  22. Phys. Rev. B v.30 Stern, F.;Sarma, S.D.
  23. Gallium arsenide (Key papers in Physics No. 1) Adachi, S.;Blakemore, J.S.(ed.)
  24. Kim, B.W.
  25. Solid State Comm. v.21 Ando, T.
  26. Appl. Phys. Lett. v.58 Hanna, M.C.;Lu, Z.H.;Majerfeld, A.
  27. Phys. Rev. B v.32 Potz, W.;Porod, W.;Ferry, D.K.
  28. IEEE J. Q.E. v.22 Bastard, G.;Brum, J.A.
  29. Phys. Rev. B v.41 Luo, H.;Furdyna, J.K.
  30. Phys. Rev. B v.41 Johnson, N.F.;Ehrenreich, H.;Hui, P.M.;Young, P.M.
  31. Phys. Rev. B v.43 Xia, J.B.;Ren, S.F.;Chang, Y.C.
  32. J. Phys. Chem. Solids v.1 Kane, E.O.
  33. Phys. Rev. B v.4 Lawaetz, P.
  34. J. Phys. Soc. Jap. v.54 Ando, T.
  35. Phys. Rev. B v.31 Chang, T.C.;Schulman, J.N.
  36. J. Vac. Sci. Technol. B v.2 Masselink, W.T.;Chang, Y.C.;Morkoc, H.
  37. Theory of impurity states in superlattice semiconductors NATO ASI Series B: Physics v.183 Srivastava, G.P.