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ABSTRACT

We have found that in the ballistic
electron transport in a ring structure, the
junction-backscattering contribution is
critical for all the major features of the
Aharonov-Bohm-type interference pat-
terns. In particular, by considering the
backscattering effect, we present new and
clear interpretation about the physical
origin of the secondary minima in the
electrostatic Aharonov-Bohm effect and
that of the h=2e oscillations when both
the electric and magnetic potentials are
present. We have devised a convenient
scheme of expanding the conductance
by the junction backscattering amplitude,
which enables us to determine most im-
portant electron paths among infinitely
many paths and to gain insight about their
contributions to the interference patterns.
Based on the scheme, we have identified
various interesting interference phenomena
in the ballistic ring structure and found that
the backscattering effect plays a critical
role in all of them.
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I. INTRODUCTION

Thanks to the recent progress of the

nano-fabrication technology utilizing the

semi-conductor hetero-junctions, it has been

made possible to study the electron transport

properties in a sample whose dimension of

interest is well within the coherent length

[1]-[5]. In such a system, the ballistic

transport, which assumes that the electrons

propagate without any deterrence except for

the scattering by the sample boundaries and

junctions, is thought to be a better description

for the electrons’ transport. The ballistic

electron transport in a ring structure where the

Aharonov-Bohm-type interference effects [6]

are observable is investigated in this work. A

great attention will be paid to the role of the

boundary scatterings, especially the backscat-

tering contribution to the interference patterns.

Previous theoretical studies on the ballistic

transport in the same ring structure [7]-[16]

have revealed interesting observations about,

among others, the secondary minima in the

electrostatic Aharonov-Bohm (A-B) effect

[8] and the alternating conductance minima

with respect to either the electric potential

change or the magnetic potential change when

both the magnetic and the electric potential

are present in the system [10]. However,

the vital role of the junction backscattering

on the interference phenomena in the ring

structure was not noticed and hence imprecise

interpretations about the physical origin of the

interferences were given [8]-[10]. One can

easily miss the point because it is commonly

believed that in the ballistic samples, the

backscattering probabilities by the junction

should be small enough not to affect the

interference patterns much. The role of the

backscattering has not been discussed in the

normal-metal mesoscopic systems either (or

the problem is already too complicated to

consider the backscattering alone). We will

show in this paper that our results counter to

the common belief in that in the true ballistic

systems the backscattering by the junction

in fact contributes critically even for very

small backscattering probabilities. With the

different perspective, we will re-visit the

issues of the interference phenomenon charac-

teristic of the system and give new and clear

interpretations about their physical origin.

These are based on our devising a convenient

scheme of expanding the conductance by the

junction backscattering amplitude in Section

II, which enables us to sort out most important

electron paths among infinitely many paths

and to gain insight about their contributions to

the interference patterns.

II. THEORY

Let us denote s ji as the transmission ampli-

tude from region i to region j of the left junc-

tion of Fig. 1, where i; jD1, 2, 3. When N, the

number of the propagating channels (modes)

in the system, is greater than one, s ji ’s are N

by N matrices with element (n, m) denoting

the transmission amplitude from mode m of re-

gion i to mode n of region j. s ji ’s constitute the
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Fig. 1. The ring structure. Shaded is the gate attached

on the lower branch of the ring which can modulate

the electron’s phase � by the gate electrostatic po-

tential. The regions surrounding the left junctions

are indexed. RC is the central radius of the half ring

andw is the width of the wires.

junction S-matrix and satisfy the unitarity con-

dition of
X

j

js ji j2D1 for each i. The transmis-

sion amplitude t of the ring structure is given

by, assuming the right junction is identical to

the left junction,

tD .s12 Q1 s13 P1/.1�M/�1

�
s31

s21

�
; (1)

where the 2N by 2N matrix M is defined as

MD

0B@s33 P2 s32 Q2

s23 P2 s22 Q2

1CA
0B@s22 Q1 s23 P1

s32 Q1 s33 P1

1CA ; (2)

where P1 (P2) is the propagation vector along
the lower (upper) branch of the ring in the
counterclockwise sense, and Q1 (Q2) in the
clockwise sense. (1) and (2), which are writ-
ten for a convenient expansion later in this Sec-
tion, can be derived from the standard way to
express the transmission amplitude t [7]-[10],

[17]. When both the magnetic flux thread-
ing the ring and the electric potential in either
or both of the upper and lower branches are
present, we may simply write down the propa-
gators in terms of the magnetostatic Aharonov-
Bohm phase shift �� .e=Nh /8 where 8 is the
magnetic flux threading the ring and the elec-
trostatic Aharonov-Bohm phase shifts �1 by
the electric potential in the lower branch and �2

in the upper branch: the l-th component of the
propagation vectors are then

P1; l Dexpfi.�=2C�1Ckl L/g;
P2; l Dexpfi.�=2C�2Ckl L/g;
Q1; l Dexpfi.��=2C�2Ckl L/g; (3)

Q2; l Dexpfi.��=2C�1Ckl L/g;

where kl is the wave vector of the electron in
the l-th propagating mode and L is the half of
the circumference of the ring. For the single
propagating channel (N D 1), (1) and (2) can
be readily solved to give,

tD s2
21f.P1CQ1/� .s22�s23/

2 P1 Q1.P2CQ2/g=D;

(4)

where

DDf1� .s2
22 P2Cs2

23 Q2 /Q1gf1� .s2
22 Q2Cs2

23 P2 /P1g
�.s22s23/

2 P1 Q1.P2CQ2 /
2: (5)

In deriving (4), the exact relationships of s21D
s13 and s12 D s31 which can be obtained by
the geometrical symmetry and the reciprocity
were used. We also set s21D s31, s22D s33, and
s23D s32, for simplicity, which is true for zero
magnetic field. The dimensionless conduc-
tance G for the one-dimensional case is then
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given by

GDjtj2D4s2
21f1Ccos� cos ��cos.�C2kLC2v/

.cos�Ccos �/g=jDj2 ; (6)

where

jDj2D .1�C2/
2C4C2

1�4 cos�fC1�C2 cos�

CC2C1g (7)

where

C1DC1.�; �/� s2
23 cos�Cs2

22 cos �;

C2� .s2
22�s2

23/
2;

���1C�2;

���1��2;

and

eiv � s22�s23:

(5) gives the exact single-channel conductance

at zero temperature.
Once the transmission amplitudes s ji of

the junction are known, the conductance can
be calculated, either through (6) in the single-
channel case or numerically in the multi-
channel case via (1) and (2). However, even
the analytical expression of (6) does not help
us clearly see which paths are responsible for
the various interference terms in the equation.
Physical origin of the various interesting in-
terference effects of the system, which will
discussed in Section III, can not be under-
stood without knowing the paths causing the
interferences. We therefore expand (4) by the
backscattering amplitude s22 (and s33, equally)
as follows. To the first order in s22 (and s33),

tD t1C t2C t3.s22; s33/CO.s2
22 /CO.s2

33 /; (8)

where

t1� s12 Q1 D s31;

t2� s13 P1 DCs21; (9)

and

t3.s22; s33/� s12 Q1 D�.s33 P2s23Cs32 Q2s33/P1 DC

s21Cs13 P1 DC.s22 Q2s32Cs23 P2s22 /Q1 D s31;

(10)

where

DC� .1�s23 P2s23 P1 /
�1;

D�� .1�s32 Q2s32 Q1 /
�1: (11)

Then the conductance G approximates

GDTr.ttC /�G0CGFCGB (12)

where

G0�Tr.t1 tC1 /CTr.t2 tC2 /; (13)

GF �Tr.t1 tC2 /CTr.t2 tC1 /; (14)

GB�Tr..t1C t2/t
C
3 /CTr..t1C t2/

Ct3/

CTr.t3 tC3 /: (15)

In the single-channel case,

G0D 1=jDCj2C1=jD�j2; (16)

GF� 2fcos.�C�/Cs4
23 cos.���/�2s2

23 cos �

cos�g=jDC j2jD�j2; (17)

GBD�8s22s23fs2
23.1Ccos.���//�cos �

.cos�Ccos �/g=jDCj2jD�j2; (18)

where

jDCj2D .1Cs4
23�2s2

23 cos.�C�//; (19)

jD�j2D .1Cs4
23�2s2

23 cos.���//: (20)
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The usefulness of the above expansion
may be appreciated by exploring the physical
meaning of, or equivalently the paths repre-
sented by, the ti’s defined above. First, D� of
(11) can be expanded as follows:

D� D .1�s32 Q2s32 Q1/
�1D

1X
nD0

.s32 Q2s32 Q1 /
n:

(21)

Thus, t1 can be written as

t1D s12 Q1 D�s31D s12 Q1

n
1C .s32 Q2s32 Q1/

C.s32 Q2s32 Q1/
2C� � �

o
s31: (22)

The first term of (22) represents the electron

which initially enters the upper branch of the

ring from the left lead, travels along the upper

branch clockwise, and at the right junction ex-

its to the right lead. The electron which crosses

the right junction and makes one complete turn

around the ring clockwise before exiting to the

right lead contributes to the second term of

(22), and the one which makes two complete

turns the third term and so on. Thus t1 rep-

resents the path of the electron circulating in

the clockwise sense, with no backscattering at

the junctions all along its way. Likewise, t2 is

for the electron circulating in the counterclock-

wise sense without any backscattering. t3 is

the term when there is only one backscattering

event in the course of the electron’s circulation

around the ring: the first term of (10) is for the

electron which initially rotates counterclock-

wise, backscatters at a junction, then rotates

clockwise untill exiting to the right lead, and

the second term the other way around. We can

go further to consider more than one backscat-

tering event in the course of the electron’s cir-

culation around the ring, which will contribute

to the terms of higher order in s22, but in this

paper, we will confine ourselves only up to the

first order in s22 for the following reasons.

That the expansion to the first order in s22,

as in (8), could be a sufficiently good approxi-

mation for t depends of course on the magni-

tude of s22, which in turn depends on the so

called coupling between the ring and the leads

[8]-[10]: for the zero coupling, the ring be-

comes completely isolated from the leads, in

which case the backscattering magnitude js22j
should be zero, and on the other hand, for the

maximal coupling js22j should reach its maxi-

mum. In the single-channel case, the sole pa-

rameter " in the range between 0 and 1/2 can

be designated to control the coupling and one

can set s22 D .
p

1�2"� 1/=2. To the pur-

pose of this paper where the importance of the

backscattering will be stressed, we will mainly

work within the very weak coupling regime in

which case the approximation by the expan-

sion only up to the first order in s22 is excellent.

Let us digress a little to discuss the cou-

pling between the ring and the leads for the re-

alistic systems such as the one in Fig. 1, whose

coupling parameter can be obtained by exactly

solving the Schröinger equation for the struc-

ture [16]-[17]. Fig. 2 shows thus-obtained cou-

pling parameter " versus the Fermi wave vec-

tor kF for RC=w D 5:5, where the w is the

width of the wires and RC is the central radius

of the ring. A single propagating channel is
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formed in the Fermi wave vector range of (�,

2�), with their boundaries being the transition

points to 0 propagating channel and 2 propa-

gating channels, respectively. As one may ex-

pect, near the channel boundaries, i.e. near �

or 2�, the ring becomes more isolated from

the leads, and at the channel center, i.e. near

kF D 1:5�, the coupling between the ring and

the leads are strongest. For the single chan-

nel regime, we find that "�0:35. In the range

of the coupling, we can safely approximate the

transmission amplitude t by the expansion up

to the first order in s22, as in (8). In passing, we

note that expansion up to the third order in s22

is found to be quite a good approximation for t

even for the strongest coupling, i.e. for "D1=2

in the single-channel case.

Fig. 2. The coupling parameter " versus the Fermi wave

vector kF (normalized by �) for the ring structure

of Fig. 1 with the central radius RC=wD5:5.

Although the formalism in this Section

holds for any number of propagating channels,

we will restrict ourselves to the single-channel

transport for the rest of this paper for the sake

of simple analysis. The results of (nontriv-

ial) extension to the multi-channel case will be

published elsewhere.

III. IMPORTANCE OF THE
BACKSCATTERING

We will show in this Section that the

backscattering, represented by t3 of (10) or

GB of (18), plays a crucial role in the ballistic

quantum transport in the ring structure, espe-

cially in the interference patterns. In the fol-

lowing, the three cases of when there is only

the electrostatic potential present, when there

is only the magnetostatic potential present, and

when both the electrostatic and magnetostatic

potential are present are separately discussed.

1. Electrostatic Aharonov-Bohm
Effect

We start with simple but intuitive expres-
sions for the ti’s defined in Section II, whereby
we drop the resonance terms DC and D� and
uninteresting multiplication factors such as s12

and s31 from them. We can then roughly set

t1�Q1;

t2� P1; (23)

and

t3� P1 Q1.P2CQ2 /: (24)

Note that with these simplified forms, the ad-
dition of the three contributions,

t1C t2C t3� .P1CQ1/C P1 Q1.P2CQ2/; (25)
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already greatly resembles the nominator of the
exact t of (4). When only the electrostatic po-
tential is present, the single-channel propaga-
tors can be set as

P1DQ2Dexpfi.�CkL/g;
Q1D P2Dexp.ikL/: (26)

Ignoring the denominators and the multiplica-
tion factors, the addition of t1 and t2,

t1C t2� .P1CQ1/�1Cei� (27)

gives the usual electrostatic A-B interference,
and

t3�ei.�C2kL/ .P1CQ1/�ei.�C2kL/ .1Cei� /: (28)

Together,

t� .1Cei� /.1Cei.�C2kL/ / (29)

and

G� .1Ccos �/.1Ccos.�C2kL//: (30)

The first term in G of (30) gives the usual elec-

trostatic A-B interference, and the second term

the so-called “secondary minima” [8]. In Ref.

[8], the secondary minima has been attributed

to the electron’s constructive interference be-

tween the one making a full circle around the

ring and the one entering the point of entry at

the left junction from the left lead. It is ob-

vious, however, from (29) and (30) that the

backscattering at the junctions represented by

t3 is necessary for the occurrence of the sec-

ondary minima: that the interference between

the two backscattering terms constituting t3

has the extra phase of ei.�C2kL/ with respect to

the interference between t1 and t2 gives rise

to the second minima. It is just a coincidence

that the phase �C2kL in the secondary minima

term is identical to the phase gain as the elec-

tron makes a full circle around the ring, which

may prompt the interpretation such as the one

proposed by Cahay et al.

Fig. 3. Various conductances defined in the text versus

the electrostatic phase shift � (normalized by 2�)

for "D0:4 (a) and 0.01 (b). Solid line is for the full

calculation G, dotted line G0CGF , and dashed line

G0CGFCGB. kL is fixed at 8.25.

To confirm our idea about the origin of the

secondary minima, we have evaluated the ex-
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act single-channel expressions of G0, GF and

GB of (16)-(18) and G of (6) for the coupling

parameter " of 0.4 and 0.01 respectively, and

compare in Fig. 3 the full calculation G, the

approximation G0CGF CGB and the approx-

imation without the backscattering term G0C
GF . The approximation to the first order in s22

agrees quite well with the full calculation for

"D0:4 and it does excellently for "D0:01, as

is expected for the very small coupling param-

eter. A clear point in the figure is that the sec-

ondary minimum which is located at �D0:682

in the figure is not seen without inclusion of

the backscattering assisted term of GB. Espe-

cially, the fact that the sharp secondary mini-

mum develops only if we include the backscat-

tering term GB, even when the ratio of the

backscattering probability and the transmis-

sion probability at the junction js22j2=js23j2 is

as small as 2� 10�5 for " D 0:01, supports

solidly our claim about the physical origin of

the secondary minima. Note that since js23j�
1 at the small coupling parameter G0 C GF

include paths of many turns around the ring,

which therefore contain the interference pro-

posed by Cahay et al. as the responsible mech-

anism (interference due to the full circulation

around the ring) for the secondary minima.

2. Magnetostatic Aharonov-Bohm
Effect

When only the magnetic flux is present in
the system, we can set,

P1D P2Dexpfi.�=2CkL/g;

Q1DQ2Dexpfi.��=2CkL/g: (31)

Then,
t1C t2� P1CQ1�1Cei� (32)

gives the usual magnetostatic A-B interfer-
ence, and

t3�e2ikL .P1CQ1/De2ikL .1Cei� /: (33)

Together,

t� .1Cei� /.1Ce2ikL / (34)

and

GDjtj2� .1Ccos�/.1Ccos 2kL/: (35)

We can thus see that t3 is in phase with t1C t2
in terms of the magnetic flux change � so it

does not produce any extra effect on the usual

magnetostatic AB oscillations. Instead, the ef-

fect of the backscattering represented by t3 is

to modulate the amplitude of G with respect to

the wave vector k.

Returning to the exact treatment for the

ti’s, let us focus on the special minima in the

conductance in a sweep by the wave vector

k while � is fixed: the exact single-channel

conductance formula of (6) gives that the con-

ductance vanishes identically when 2kLCvD
.2nC1/�, where n is an integer. (Note that the

crude expression of (35) also has the feature

that G becomes identically zero when 2kL D
.2n C 1/�:/ That G vanishes at the special

points is impossible without the backscattering

term t3 and hence GB is illustrated in Fig. 4.

In the figure, we have evaluated the single-

channel expressions of G0CGF and G0CGFC
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GB of (16)-(18) and also the exact expression

for G of (6). There the coupling constant "

is taken to be 0.1 at which the ratio of the

backscattering and the forward transmission at

the junction js22j2=js32j2 �D 3� 10�3. The ra-

tio may lead one to believe that the backscat-

tering contribution should be negligible and G

should be well approximated by G0 and GF

only. However, as the figure clearly shows,

small the backscattering may be, only when we

include its contribution,we get the proper min-

ima in the conductance.

Fig. 4. The same as in Fig. 3 but with respect to kF

(normalized by �). The parameters used are: LD
5:5� and �=2�D0:01.

3. In the Presence of Both the Mag-
netic and the Electric Potentials

In both the magnetostatic and the elec-
trostatic A-B effects, the interference term of
P2CQ2 from t3 was identical to the interfer-
ence P1 C Q1 from t1 and t2. (See (26) and
(31).) Only when the magnetic flux and the
electrostatic potential are present simultane-
ously, they can be distinguished: the simpli-

fied expressions for ti’s gives, using the single-
channel propagators of (3),

t1C t2� P1CQ1D2ei.�=2CkL/ cos.�=2C�=2/;
t3� P1 Q1.P2CQ2/D2ei.�=2CkL/ei.�C2kL/

cos.�=2��=2/: (36)

So,

t�fcos.�=2C�=2/Cei.�C2kL/ cos.�=2��=2/g
(37)

and

G� .1Ccos� cos �/Ccos.�C2kL/.cos �Ccos �/:

(38)

We can see that the usual forward interference

of t1C t2 gives the phase shift of �C � while

the backscattering-assisted term of t3 gives the

phase shift of ���, which is also clearly seen

in the expressions of GF and GB of (17) and

(18).
In the previous discussions of the magne-

tostatic A-B and electrostatic A-B effects, the
role of the denominators of ti’s was not em-
phasized, although taken into account in the
exact treatments, partly because the numera-
tors only could explain major features of the
interference patterns (minima) that we were in-
terested in and partly because the fact that the
two denominators DC and D� are identical
greatly lifts further complications. In the cur-
rent investigation of the magneto-electrostatic
A-B effect, however, we find that the two non-
degenerate denominators importantly alter the
interference patterns which would have been
much simpler with the numerators only, such
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Fig. 5. The conductance G versus the magnetic flux � (normalized by 2�) for different electrostatic phase shifts at zero

temperature (a) and at a high temperature (b). The electrostatic phase shift � is zero for the bottommost curves and

increments linearly up to the topmost curves where � is 2�. kL is fixed at 8.25 for both figures.

as (38). Complications by inclusion of the de-
nominators beat us in any attempt for a sim-
ple analysis of the conductance behavior in the
form of (6). We have nevertheless found that
at zero temperature, the conductance G can be
well approximated by

G�G0D1=jDCj2C1=jD�j2 (39)

if the coupling parameter " is not too close to
1/2. And at a sufficiently high temperature, G
can be derived to be, approximately,

G� s22.1Ccos� cos �/=.1Cs2
23 cos 2�/: (40)

By the sufficiently high temperature we mean
the temperature above which the temperature
averaging of the conductance, which is

G.T /D
Z

dkF

�
� d f

dkF

�
G .kF I TD0/; (41)

where f is the Fermi distribution, becomes

practically independent of the temperature,

that is, the cosine terms containing the Fermi

wave vector kF in the zero-temperature con-

ductance become completely averaged out. At

T D 0, the term cos.�C �/ in jDCj2 and the

term cos.�� �/ in jD�j2 of (39) give rise to

the two sets of peaks running in the opposite

directions in the conductance plot against the

magnetic flux � and the electric potential �.

See Fig. 5(a). In the high temperature limit,

the two sets of the conductance minima in the

plot against � alternate with � as follows. (See

Fig. 5(b).) At � D 0, only one set of min-

ima located at � D � and 3� are visible, but

as � increases from 0, the second set of min-

ima located at � D 0 and 2� develop and be-

come deeper while the minima located at � and
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3� become shallower. The development of the

second set of the minima and the diminution of

the first set of the minima continue until �D�,

where only the second set of minima are now

visible. In the meanwhile, at � D � the two

sets of the minima become equal in their depth

so as to make it appear that the period of the

conductance oscillations with respect to � is �.

The same process repeats as � increases further

from �, with the role of the first and the second

set of minima reversed. Note that this behav-

ior is well accounted for by the concise form of

(40).

It is the high temperature limit that the

backscattering contribution by GB is abso-

lutely necessary for the behavior mentioned

above. The point is clearly illustrated in Fig. 6

where G (the full calculation without any ap-

proximation), G0, GF , GB, and G0CGFCGB

are shown when �D�=2. We first note that the

full calculation G is well approximated by the

summation, G0CGFCGB, of the three contri-

butions. G0 is almost constant in this high tem-

perature limit and GF and GB look shifted by�

from each other. When GF and GB are added

together, their original 2� oscillations cancel

out and produce the � oscillation: this is in ef-

fect equivalent to the vanishment of the � de-

pendence term in the numerator of the expres-

sion (40) when � D �=2 and only the denom-

inator which has the period of � influence the

conductance oscillations. The authors of Ref.

[10] only dealt with the zeroes of the numerator

of the conductance in (6) to explain the minima

of the � oscillations, whereby they did not give

any physical origin of the oscillations anyway.

It is now clear from our analysis that the ze-

roes of the numerators just coincided with the

minima at �D�=2 and that the multiplications

of the two resonance terms, jDCj2 and jD�j2,

as the result of the addition of the forward-

interference contribution and the backscatter-

ing contribution, give rise to the desired � os-

cillations. As in the case of the electrostatic or

magnetostatic A-B effect, we again emphasize

that one cannot obtain the proper interference

patterns without the backscattering contribu-

tion, however small it may seem by looking at

the backscattering probability at the junctions.

Fig. 6. The various conductances at a high temperature

when the magnetic and electric potentials are si-

multaneously present. � is fixed at �=2 and L D
5:5�. The legends are: solid circles for G, open cir-

cles for G0CGFCGB, dashed line for G0, solid line

for GF , and dotted line for GB.

IV. CONCLUSION

We have presented that the major features

of the Aharnov-Bohm-type oscillations in the
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ballistic limit cannot be explained without con-

sidering the backscattering contribution orig-

inated from the electrons’ scattering by the

junctions. We have expanded the conductance

in terms of the backscattering amplitude at the

junction and showed that the expansion only

up to the first order can be used to successfully

account for the backscattering contributions in

the various interference phenomena. In partic-

ular, the physical origin of the secondary min-

ima in the electrostatic A-B effect and that of

the � oscillations in the magneto-electrostatic

A-B effect have been clarified by the consider-

ation of the backscattering contribution.
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