Integrated-Optic Polarization Controlling Devices Using Electro-Optic Polymers

  • Published : 1997.01.31

Abstract

Integrated-optic polarization controlling devices such as polarizers, polarization splitters, and polarization converters, are proposed and demonstrated in nonlinear optic polymers. Poling-induced birefringence in electro-optic polymers is exploited to fabricate the devices. The polymeric waveguide polarizers show low excess losses, and extinction ratios of 20.7 dB and 17.1 dB for TM-pass and TE-pass polarizers, respectively. The polymeric waveguide polarization splitters exhibit TE-TM mode splittings with crosstalk of 14.2 dB and 10.1 dB for TM and TE mode splittings, respectively. The polymeric waveguide polarization converters show successful TE/TM polarization mode conversion with conversion efficiencies of higher than 30 dB. The device employs poling-induced waveguides which have slowly rotating azimuth angle of optic axis along the light propagation direction. The novel polarization converter is insensitive to wavelength and easier to fabricate than the other polarization converters containing periodic structures.

Keywords

References

  1. Polymers for Lightwave and Integrated Optics: Technology and Applications Hornak, L.A.(ed.)
  2. Appl. Phys. Lett. v.60 Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth Teng, C.C.
  3. Progress toward practical polymer electro-optic devices, Organic Thin Films for Photonics Applications Ermer, S.;Anderson, W.W.;Van Eck, T.E.;Girton, D.G.;Marley, J.A.;Harwit, A.;Lovejoy, S.M.;Leung, D.S.
  4. IEEE Photon. Technol. Lett. v.7 no.6 40 GHz polymer electrooptic phase modulators Wang, W.;Chen, D.;Fetterman, H.R.;Shi, Y.;Steier, W.H.;Dalton, L.R.
  5. Integration of nonlinear optical (NLO) polymer waveguides with indium gallium arsenide p-i-n photodiodes, Organic Thin Films for Photonics Applications Cites, J.S.;Ashley, P.R.;Leavitt, R.P.
  6. Appl. Phys. Lett. v.63 no.9 Optical intensity modulation in a vertically stacked coupler incorporating electro-optic polymer Hikita, M.;Shuto, Y.;Amano, M.;Yoshimura, R.;Tomaru, S.;Kozawaguchi, H.
  7. Appl. Phys. Lett. v.62 Multilevel registered polymeric Mach-Zehnderintensity modulator array Tumolillo, T.A. Jr.;Ashley, P.R.
  8. IEEE J. Lightwave Technol v.12 no.9 Integrated-optic focal-spot intensity modulator using electrooptic polymer waveguide Oh, Min-Cheol;Shogo Ura;Toshiaki Suhara;Hiroshi Nishihara
  9. Appl. Phys. Lett. v.52 no.13 Poled electro-optic waveguide formation in thin film organic media Thackara, J.I.;Lipscomb, G.F.;Stiller, M.A.;Ticknor, A.J.;Lytel, R.
  10. IEEE J. Quantum Electron. v.31 no.9 Simulation of polarization converter formed by poling-induced polymer waveguides Oh, Min-Cheol;Lee, Sang-Shin;Shin, Sang-Yung
  11. Optics Lett. v.13 no.2 Low-loss high-extinction polarizers fabricated in $LiNbO_3$ by proton exchange Suchoski, P.G.;Findakly, T.K.;Leonberger, F.J.
  12. IEEE Photon. Technol. Lett. v.4 no.8 Buried optical waveguide polarizer by titanium indiffusion and proton-exchange in $LiNbO_3$ Jiang, D.;Zhou, F.;Laybourn, P.J.R.;De La Rue, R.M.
  13. IEEE Photon. Technol. Lett. v.6 no.2 A TE-TMmode splitter on lithium niobate using Ti, Ni, and MgO diffusions Wei, P.K.;Wang, W.S.
  14. IEEE Photon. Technol. Lett. v.5 no.12 Mode evolution type polarization splitter on In-GaAsP/InP van der Tol, J.J.G.M.;Pedersen, J.W.;Metaal, E.G.;Oei, Y.S.;van Brug, H.;Moerman, I.
  15. IEEE J. Lightwave Technol. v.11 no.11 An integrated optic adiabatic TE/TM mode splitter on silicon de Ridder, R.M.;Sander, A.F.M.;Driessen, A.;Fluitman, J.H.J.
  16. IEEE Photon. Technol. Letters v.7 no.1 A new short and lowloss passive polarization converter on InP van der Tol, J.J.G.M.;Hakimzadeh, F.;Pedersen, J.W.;Li, D.;vanBrug, H.
  17. Appl. Phys. Lett v.59 no.11 Polarization rotation in asymmetric periodic loaded rib waveguides Shani, Y.;Alferness, R.;Koch, T.;Koren, U.;Oron, M.;Miller, B.I.;Young, M.G.
  18. IEEE J. Quantum Electron. v.QE-11 no.1 Mode conversion in planar-dielectric separating waveguides Burns, W.K.;Milton, A.F.
  19. Electron. Lett. v.32 no.4 Polymeric waveguide polarization splitter based on polinginduced birefringence Oh, Min-Cheol;Lee, Sang-Shin;Shin, Sang-Yung;Hwang, Wol-Yon;Kim, Jang-Joo
  20. Electron. Lett. v.26 no.6 Photoinduced channel waveguide formation in nonlinear optical polymers Diemeer, M.B.J.;Suyten, F.M.M.;Trommel, E.S.;McDonach, A.;Copeland, J.M.;Jenneskens, L.W.;Horsthuis, W.H.G.
  21. IEEE Photon. Technol. Lett. v.8 no.3 Poling-induced waveguide polarizers in electrooptic polymers Oh, Min-Cheol;Shin, Sang-Yung;Hwang, Wol-Yon;Kim, Jang-Joo
  22. Appl. Phys. Lett v.66 no.6 Origin of the poling-induced optical loss in a nonlinear optical polymeric wave- guide Teng, C.C.;Mortazavi, M.A.;Boudoughian, G.K.
  23. Appl. Phys. Lett. v.67 no.13 Wavelength insensitive passive polarization converter fabricated by poled polymer waveguides Oh, Min-Cheol;Shin, Sang-Yung;Hwang, Wol-Yon;Kim, Jang-Joo