ETRI Journal, volume 19, number 4, December 1997

317

High-Speed Array Multipliers

Based on On-the-Fly Conversion

CONTENTS

. INTRODUCTION

. ALGORITHM AND ARCHITECTURE
1. PERFORMANCE EVALUATION

V. CONCLUSIONS

REFERENCES

Sang-Man Moh and Suk-Han Yoon

ABSTRACT

A new on-the-fly conversion algorithm is
proposed, and high-speed array multipliers
with the on-the-fly conversion are presented.
The new on-the-fly conversion logic is used to
speed up carry-propagate addition at the last
stage of multiplication, and provides constant
delay independent of the number of input bits.
In this paper, the multiplication architecture
and the on-the-fly conversion algorithm are
presented and discussed in detail. The pro-
posed architecture has multiplication time of
(n+1)ty,, where n is the number of input
bits and ¢, is the delay of a full adder. Ac-
cording to our comparative performance eval-
uation, the proposed architecture has shorter
delay and requires less area than the conven-
tional array multiplier with on-the-fly conver-

sion.

318 Sang-Man Moh and Suk-Han Yoon

I. INTRODUCTION

Parallel multipliers are classified mainly
into array multipliers and tree multipliers.
Basically the array multipliers include two-
dimensional full adder arrays, and the full
adder arrays are based on the algorithm
proposed by Baugh and Wooley [1]. The
tree multipliers consist of full adder trees,
which were initially proposed by Wallace [2]
and evolved by Dadda [3] and many other
researchers [4].

Regardless of multiplication schemes,
most multipliers require carry-propagate
addition at the last stage of multiplication
to generate a complete 2n-bit product [5].
Such a carry-propagate addition is compar-
atively slow and requires significant area in
VLSI implementation [6].

To speed up the carry-propagate addi-
tion for the last stage, on-the-fly conver-
sion techniques have been studied. Ercego-
vac and Lang [7] proposed a multiplication
scheme not requiring carry-propagate addi-
tion at the last stage of conventional mul-
tipliers, by carrying out the on-the-fly con-
version based on the technique presented in
[8]. And Montuschi and Ciminiera [9] pro-
posed n x n multipliers without final carry-
propagate addition, which produce 2n-bit
results with delay comparable to the mul-
tiplier proposed by Ercegovac and Lang in
[7]. In the multiplication schemes proposed
in [9], the determination of the most signif-
icant digits is carried out by using the on-
the-fly conversion in parallel with the com-

putation of the least significant bits.

ETRI Journal, volume 19, number 4, December 1997

Still, however, it is required to speed
up the multiplication with minimum area
overhead. Our new approach to fast ar-
ray multiplication is presented in this pa-
per. We propose high-speed array multi-
pliers with new on-the-fly conversion logic.
The newly proposed on-the-fly conversion
logic provides the constant delay indepen-
dent of the number of input bits. We eval-
uate our multiplication scheme and com-
pare it with the conventional multiplier pro-
posed in [9]. The proposed scheme pro-
vides shorter delay than the multiplication
scheme, with less area than [9].

In Section II of this paper, the algorithm
and architecture of the proposed on-the-fly
conversion and multiplication scheme are
presented in detail. In Section III, the per-
formance evaluation results are discussed.
And the conclusions are covered in Section
Iv.

Il. ALGORITHM AND
ARCHITECTURE

Two’s complement numbers X and Y
can be represented as

X = [xn—lmn—2 T fI;O](2)

n—2

= Z.’L‘Z . 22 —Tp-1- 2"_1 (1)
=0

and
Y = [ynflyan T yO](Z)

n—2
=D 52 g2, (2)
i=0

ETRI Journal, volume 19, number 4, December 1997

respectively.
notes that the n-bit string =, 1z, 2 20

The [z, 12Zn2-- 202) de-

is a binary number composed of Os and 1s.
If the product Z is given by multiplying the
above X and Y, it can be calculated by

Z=X.Y. (3)

And the 2n-bit product Z can be repre-
sented as

Z = [n-12m-2" " 20)(2)
2n—2

= Z Zi* 27 — Z9n—1" 22n71. (4)
=0

Baugh and Wooley [1] suggested a two’s
complement array multiplication algorithm,
and it was extended by Blankenship [10] as
shown in Fig. 1. The elementary products
of 5-bit multiplication can be rearranged as

shown in Fig. 2.

Sang-Man Moh and Suk-Han Yoon 319

at the last step of multiplication. The
proposed multiplier for n =5 is shown in
Fig. 3, where the least significant n + 1
bits of array output are produced in carry-
assimilated representation and the most sig-
nificant n — 1 bits are produced in carry-

sum pair form.

Ty + Ya Ta+ Y4 T4Y3 TaY2 TAYL T4Yo T3Yo T2Yo T1Yo ToYo
T3Y4 TY3 T3Y2 T3Y1 T2Y1 T1Y1 ToY1
ToYs T2Y3 T2Y2 T1Y2 ToY2
T1Ya T1Y3 ToY3
T0Y4
T4

Y4

Z9 zZ8 z7 Z6 z5 Z4 z3 z9 Z1 Z0

ZT4Y1 T3Y1 T2Y1 T1Y1 ToY1
T4Y2 T3Y2 TaYa T1Y2 ToY2
T4Y3 T3Y3 T2Y3 T1Y3 ToY3
g+ Ya Ta+ Ys T3Ys ToYs T1Ys ToYa
4

Y4

T4Yo T3Yo T2Yo T1Y0 ToYo

Z9 Z8 27 2 &5 24 X3 22 21 20

Fig. 1. Elementary products (n =75).

Based on the rearranged elementary
products, we propose an array multiplier

which avoids the carry-propagate addition

Fig. 2. Rearrangement of elementary
products.

If we represent each carry-sum pair as
(ai, b;), the sum s; and carry-out ¢; of half
adder outputs are given by

si:ai@bi, i:1,2,~--,n71 (5)
and
c,;:a7;~b7;, 7;:1,2,"',71—1, (6)

respectively, where @ is the symbol of logi-
cal exclusive-or. And in the proposed mul-
tiplier, the most significant n — 1 bits of
the product Z are produced by an on-the-
fly conversion algorithm. For example, the

320 Sang-Man Moh and Suk-Han Yoon

ETRI Journal, volume 19, number 4, December 1997

3 inputs

FA: full adder
HA: half adder

Fig. 3. Proposed array multiplier.

products 2.1, Zn42, Znt3s Znid, 75 2201
are given by

Zn+1 = Sn—1, (7)
Zn+2 = Sp—2®Cp-1, (8)
Zn+3 = Sp-3 ©® Cp—2 @37772677713 (9)

Zn+4 = Sn—4 Dcn3DSn-3cn—2

DSp—351-2Cn—1, (10)
Zon—1 = S1D 2 D 5203 D 5283¢4 D S25354C5
D DSaS3 - Sp—2Cy_1, (11)

respectively. Therefore, the product zy, ;
for i=1,2,---,n—1 is given by

Zon—i = Si D Cit1 D Si+1Ci+2D Si+18i+2Ci+3D - -+

BSit18i42° " Sn-2Cn1 (12)

in generalized notation.

Let us define k; ; and t; ; for i =1,2,---,
n—1 as

ki7j,1$i+]',1 lf j = 2,3, e, — 1—1
ki,j =
1 if j=1
(13)

t7j7]',1 @kw-c,;ﬂ- lf_] = 1,2,~~~,n—1—i

tij = (14)

S; lfj:(),

respectively, in recursive form.

The k;; and ¢;; can be effectively used
to represent the most significant n —1 bits
of the product Z. The products z,11, 2Zni2,
Zni3, Znad, "'y Zon—1, which are produced
by the on-the-fly conversion algorithm, can

be represented again by

Zn+1 = Sn—1

ETRI Journal, volume 19, number 4, December 1997

=tp-1,0, (15)
Zn+2 = Sp—2 Dcp

= tn72,0 S2) C(n—2)+1

= tn20Dkn-21Cn-2)11

= tn—?,lv (16)
Zn+3 = Sp—3 D Cn—2 Dsp—2Cn—1

= 1n-31 D S(n-3)+2-1C(n-3)+2

=tp-31D k’n—3,2c(7173)+2

= tn—3,2> (17)
Zntd4 = Sp—4 D 3D Sn-—3Cn—2 D Sn-35n—2Cn—1

= tp-42Dkn-1251n-4)43-1C(n—4)+3

= tn-12 DB kn-13Cn—1)43

=tn-43, (18)

Zon—1 = S1 Dy D S2c3 D 525304 D 5253545 D -+
Ds283 -+ Sp—2Cn—1
= t1.0-3 D k1:0-3514+(n—2)-1Cl4+(n—2)
= tl,n—3 S2) kl,’rz—2cl+('n—2)
= tl,n—?a (19)

respectively. By making the above formu-
las be formal and generalized notation, each
product zs,—; of the most significant n —1
bits of the product Z for ¢ =1,2,---,n—1
can be represented by

Zon—i = 8i D Cit1 D Sit1Ci+2 D Sit18i42Ci43D -+
BSit+18i+2°* Sp—2Cn—1
= tin—i—2 Okin—i1Ciy(n—i-1)
=tipn—i-1- (20)

Figure 4 shows the on-the-fly conversion
logic for n =5. As shown in Fig. 4, as soon
as each carry-sum pair (a;,b;) is generated
out of the full adder array, the on-the-fly

conversion is carried out for each pair.

Sang-Man Moh and Suk-Han Yoon 321

|[1,1@ k1,253|| 5,@ ¢ |

L% kl,T by i i (‘145 b4)
|11'2€B k1’3c4||t2'1$ k2'2c4|| RNXN | | S, . |
Zy(t15) Zy(t,5) z,(t;) Zg(ty)

Fig. 4. On-the-fly conversion logic.

I1l. PERFORMANCE
EVALUATION

The proposed multiplier can be evalu-
ated by using two parameters of multiplica-
tion time and area. We evaluate the pro-
posed multiplier on the basis of these two
parameters, and then we compare it with
the multiplier proposed by Montuschi and
Ciminiera [9].

1. Speed

Let us denote the delay in generating the
elementary product terms by tyor avp, the
delay of a full adder by t¢;,, and the delay
of the final step of the on-the-fly conversion
logic by tivp_xor- The multiplication time of
the proposed multiplier, t,,,, is represented
as

tpro = tyor—anp T NMpa+ Canp-xor- (21)

322 Sang-Man Moh and Suk-Han Yoon

The tyor—anp + tavo_xor can be represented
by

tNOT—A[\"D + tAND—XOR S tFA (22)

since the longest path of a full adder is
sum(FA) =a®b®cj,. Therefore, t,., in
equation (21) is represented again as

toro = (N4 1)t 4. (23)

According to [9], the multiplication time
of the multiplier proposed by Montuschi
and Ciminiera is

tye = (n + 2)tFA + tyor_anp- (24)

The comparison of t,., and t,. shows
that the proposed multiplier architecture
has shorter delay than the conventional
multiplication scheme. That is, ¢, is re-

duced by the delay of ¢4+ tyor_avp OVer tye.

2. Area

To evaluate the hardware required to im-
plement the proposed multiplier, we denote
the hardware used to implement an AND
gate, a full adder, a half adder and the logic
function t; ; by Kuvp, Kra, Ky, and K, re-
spectively. The hardware required to build
up the proposed multiplier, K,,,, can be
represented as

Kpro = n2K4ND + (TL - 1)2KFA +nKy,
n—1)(n—2
=)=

IO (25)

As shown in Fig. 4, K; can be expressed as
Ko + Kyor, where Ky, is the hardware

ETRI Journal, volume 19, number 4, December 1997

used to inplement an XOR gate. Therefore,
K, can be represented again as

Kpro = nzKAND + (n - 1)2KFA +nKy,
—1)(n—2
L (-Dn-2)

2 (K o+ o). (26)

According to [9], the hardware required
to implement the multiplier proposed by
Montuschi and Ciminiera, K, is given by

Ko =’ K+ (202 =3n+ 1)K, (27)

For more practical evaluation, we use
typical area for basic logic elements in terms
of the area of a two-input NAND gate,
which is shown in Table 1 [11], [12]. The en-

100,000
65,332
41,040
|:| I<MC
10,000 — l KP“’ 13,978 080 —
3,820
2434
g 1,000 _ 871569]
s 78
£ 127
S 100 [— -
10 — -
1
4 8 16 32 64
Number of bits
Fig. 5. Normalized area of two multiplication
schemes.

tries in Table 1 have been normalized with
respect to the area of a two-input NAND
gate.

ETRI Journal, volume 19, number 4, December 1997

Sang-Man Moh and Suk-Han Yoon 323

XY

3 inputs

Carry
Sum

2 inputs

FA: full adder
HA: half adder

Fig. 6. The multiplier for unsigned numbers (n = 5).

Table 1. Area of basic logic elements.

Logic element Normalized area
Two-input NAND 1.00
Two-input AND 1.30
Two-input XOR 1.50
Full adder 7.50
Half adder 5.00

For comparative evaluation, we have
plotted the normalized area of the con-
ventional multiplication scheme [9] and the
proposed one in accordance with the num-

ber of input bits. Figure 5 shows the area

of two multiplication schemes. As shown in
Fig. 5, Ky is 71.3% to 62.8% of K, for the
multiplication of 4 to 64 bits. That is, the
proposed multiplier requires less area than

the conventional multiplier [9].

On the basis of the proposed two’s com-
plement multiplier described above, the un-
signed scheme with the proposed on-the-fly
conversion logic is easily designed as shown
in Fig. 6. Since there is no sign bit in the
unsigned multiplication, the multiplier for
unsigned numbers is simpler and more mod-
ular than the two’s complement scheme.
Figure 6 shows such an unsigned multipli-

cation scheme for n = 5.

324 Sang-Man Moh and Suk-Han Yoon

IV. CONCLUSIONS

In this paper, we have presented the
high-speed array multipliers with on-the-fly
conversion. The newly proposed on-the-fly
conversion logic provides constant delay in-
dependent of the number of input bits. Ac-
cording to our evaluation results, the multi-
plication time of the proposed scheme is re-
duced by the delay of ¢y, +tyor_anp Over [9],
and the area of the proposed one is 71.3%
to 62.8% of [9] for the multiplication of 4
to 64 bits. That is, the proposed architec-
ture has shorter delay and requires less area
than the conventional array multiplication
scheme with on-the-fly conversion. Also, we
have designed the multiplier for unsigned
numbers, which is simpler and more modu-

lar than the two’s complement scheme.

REFERENCES

[1] C. R. Baugh and B. A. Wooley, “A two’s
complement parallel array multiplication algo-
rithm,” IEEE Trans. on Computers, vol. 22, no.
12, pp. 1045-1047, Dec. 1973.

[2] C. S. Wallace, “A suggestion for a fast multi-
plier,” IEEE Trans. on Electronic Computers,
pp. 14-17, Feb. 1964.

[3] L. Dadda, “Some schemes for parallel multipli-
ers,” Alta Frequenza, vol. 19, pp. 349-356, May
1965. Reprinted in Computer Design Develop-
ment, E. E. Swartzlander Jr., Ed. Rochelle Park,
New Jersey: Hayden Book, 1976.

[4] 1. Koren, Computer Arithmetic Algorithms. En-

glewood Cliffs, New Jersey: Prenctice Hall,
1993. pp. 99-123.

ETRI Journal, volume 19, number 4, December 1997

[5] K. Hwang, Computer Arithmetic: Principles,
Architecture, and Design. New York: John Wi-
ley & Sons, 1979. pp. 129-210.

[6] M. Uya, K. Kaneko, and J. Yasui, “A CMOS
floating-point multiplier,” IEEE J. Solid State
Clircuits, vol. 19, no. 5, pp. 697-701, Oct. 1984.

[7] M. D. Ercegovac and T. Lang, “Fast multiplica-
tion without carry-propagate addition,” IEFE
Trans. on Computers, vol. 39, no. 11, pp. 1385-
1390, Nov. 1990.

[8] M. D. Ercegovac and T. Lang, “On-the-fly con-
version of redundant into conventional represen-
tations,” IEEFE Trans. on Computers, vol. 36,
no. 7, pp. 895-897, July 1987.

[9] P. Montuschi and L. Ciminiera, “n X n carry-
save multipliers without final addition,” Proc.
11th IEEE Symp. on Computer Arithmetic,
June 1993. pp. 54-61.

[10] P. E. Blankenship, “A comment on “A Two’s
complement Parallel Array Multiplication Algo-
rithm”,” IEEE Trans. on Computers, vol. 23,
no. 12, pp. 1327, Dec. 1974.

[11] S. Sunder, F. El-Guibaly, and A. Antoniou,
“Two’s-complement fast serial-parallel multi-
plier,” IEE Proceedings - Circuits, Devices and
Systems, vol. 142, no. 1, pp. 41-44, Feb. 1995.

[12] N. Weste and K. Eshraghin, Principles of CMOS
VLSI Design: A Systematic Perspective. Mas-
sachusetts: Addison Wesley, 1985. pp. 1-231.

ETRI Journal, volume 19, number 4, December 1997

Sang-Man Moh received the
M.S. degree in computer sci-
ence from Yonsei University,
Seoul, Korea in 1991. Since
1991, he has been with Pro-
cessor Section of Electronics
and Telecommunications Re-
search Institute, Taejon, Korea as a senior member of
research staff. He received the national qualification
for Professional Engineer in information technology
from the Korean Goverment in 1993. His research
interests include computer architecture, parallel pro-
cessing systems, computer arithmetic, VLSI-oriented
algorithms and ASIC design. He has published over
20 papers as first author in international and domes-
tic journals and proceedings, and has held over 30
patents. He is a member of the IEEE Computer So-
ciety, Association for Computing Machinery, Korea
Information Science Society, and Korea Institute of

Telematics and Electronics.

Suk-Han Yoon received the
B.E. degree in electronic en-
gineering from Korea Univer-
sity, Seoul, Korea in 1977,
the M.S. degree in computer
science from KAIST, Taejon,
Korea in 1986, and the Ph.D.
degree in electronic engineering from Korea Univer-
sity, Seoul, Korea in 1995. He joined Electronics
and Telecommunications Research Institute in 1977,
where he is currently working as a Director of Com-
puter Technology Division and in charge of High-
Performance Computer Development Project. His
current research interests include high-performance
computer architecture, parallel computing systems

and microprocessor architecture.

Sang-Man Moh and Suk-Han Yoon

325

