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ABSTRACT

The delay which is one of the quality of
service parameters is considered to be a cru-
cial factor for the effective usage of real-time
audio and video streams in interactive mul-
timedia collaborations. Among the various
causes of the delay, we focus in this paper on
the local delay concerned with the schemes
which handle continuous inflow of encoded
data from constant or variable bit-rate audio
and video encoders. We introduce two kinds
of implementation approaches, pull model and
push model. While the pull model periodically
pumps out the incoming data from the sys-
tem buffer, the push model receives events
from the device drivers. From our experi-
ments based on Windows NT 3.51, it is shown
that the push model outperforms the other for
both constant and variable bit-rate streams in
terms of the local delay, when the system suf-
fers reasonable loads. We interpret this ex-
perimental data with M/G/1 multiple vaca-
tion queuing theories, and show that it is con-
sistent with the queuing theoretic interpreta-
tions.
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I. INTRODUCTION

1. Motivation

We have developed a prototype dis-
tributed multimedia stream processing
server, MuX-II [1], [4], [5] which provides in-
tramedia and intermedia synchronizations
for networked real-time audio and video
streams on Window NT 3.51 and Solaris
4.3. The MuX-II is aimed to support re-
alistic conversations among end users par-
ticipating a teleconference.

In order to achieve this goal, a variety
of quality of service (QoS) parameters [18],
[19] has to be optimized in many points
such as the coder/decoder (CODEC), net-
work bandwidth allocations, local resource
scheduling, and so on. Among the various
QoS parameters at such points, we focus
in this paper on the local delay concerned
with the schemes for processing continuous
inflow of real-time compressed data from
the audio and video encoder. Examples of
such encoders include pulse code modula-
tion (PCM) [2] and H.261 [3].

We investigate two implementation
schemes, pull model and push model, for
While the
pull model periodically pumps the incom-

this local input processing.

ing data out from the system buffer, the
push model receives events sent from device
drivers for encoding hardware. The pull
model is more meaningful in point of oper-
ating system views since it only requires a
periodic resource scheduling which is heav-
ily studied in real-time task scheduling lit-
erature [11]. But the pull model necessarily
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suffers delay of the half of the period in av-
erage, while the push model does not have
such intrinsic handicaps. So it is necessary
to compare each other in diverse situations
in terms of offered load, stochastic charac-
teristics, e.g., mean and variances, of the

arrival data and their processing time.

2. Related Works

Since the pull model has many attrac-
tive points in the view of resource schedul-
ing, much of the recent literature has been
focused on periodic workload models [11],
[12]. As a principal advantage of these mod-
els, QoS values can be easily calculated us-
ing the results from the field of real-time
scheduling. More-over, these models basi-
cally require the specification of only max-
imum packet rate and size, which can be
easily derived from the application, regard-
less of either variable bit-rate (VBR) or con-
stant bit-rate (CBR) streams.

The non-periodic traffic model which
has been a traditional basis for the stud-
ies of VBR streams assumes that the over-
reservation of resource capacities which fre-
quently happens in the periodic workload
models leads to an underusage of the sys-
tem and, finally, to the needless rejection of
new reservation requests. This property of
the periodic traffic model has led other re-
searchers to the conclusion that it is not ad-
equate for handling VBR streams [13], [14].
They prefer somewhat complex approaches

that can model the traffic behavior more
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accurately and thus lead to less wasteful re-

source reservation.

While there have been much dis-
cussions for traffic estimation and op-
timization, International Telecommunica-
tion Union-Telecommunications (ITU-T)
recently approved recommendation H.323
aimed for supporting QoS non-guaranteed
LAN-based multiparty audio-video telecon-
ferences [23]. This recommendation in-
cludes several specifications for variable bit-
rate audio-video CODECs such as H.261,
H.263, and ADPCM. As an alternative ap-
proach for LAN or Internet-based multime-
dia applications, Multimedia Communica-~
tion Forum (MMCF) [8], [10], [18] is work-
ing on defining a reference architecture [§]
for distributed multimedia platforms. This
architecture defines domains and their ap-
plication program interfaces (APIs) with
object-oriented concepts. The domains in-
clude applications, middleware, media de-
vice interface (MDI) [25], transport ser-
vice interface (T'SI), QoS Management, and
so on. As applications, multimedia desk-
top collaboration (MDC), multimedia mail
and message (MMM), and multimedia in-
formation retrieval (MIR) are under dis-
cussion. Among those domains, MDI is a
device abstraction layer to support device-
independent interfaces for diverse local mul-
timedia devices so that the middleware and
application programs should not be repro-
grammed or reorganized by any change

of local devices. Devices are abstracted
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and treated as objects according to cer-
tain class hierarchies. To publicize any ob-
jects abstracted by MDI, the middleware
[10] provides naming and trading services
in the distributed environments. The pri-
mary purpose of MuX-II server is to provide
generic but optimized local stream connec-
tions between local multimedia devices and
multicast transport facilities as an essential
stream-processing component for on-going
standardization activities like MMCF MDI
as well as ITU-T standard audiovisual tele-

conferences.

3. Our Approach

We understand that the above discus-
sions have been done in terms of the net-
work delay. Compared to these approaches,
we take a different domain in that we fo-
cus on local delay. Actually, the local de-
lay can be interpreted in the same con-
text as the network delay, and can be for-
malized and calculated based on the stud-
ies for the periodic resource scheduling [8],
[15]-[17]. But we think that periodic treat-
ments of both VBR and CBR streams need-
lessly cause longer local delay than non- pe-
riodic event-based treatments do, especially
when the local system deals with reasonable
loads. In the situation when the system suf-
fers just reasonable loads, the non-periodic
tasks from a VBR stream can be served
quickly enough with a minimum probability
of missing deadlines.

In our experiment, as supposed, it is

practically shown that the push model takes
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shorter delay than the pull model for both
PCM [2] constant bit-rate audio and H.261
[3] variable bit-rate video streams. We show
that these experimental data are consistent
with mathematical interpretations based on
M/G/1-multiple vacation queuing models
[7]. The vacation is understood as the
period while the processor is scheduled to
tasks other than the stream under consid-
eration. In this paper, we use the following

notation to explain our experimental result:

e Var{(C] : variance of service period of the
pull model. C means service period.

e Var{V] : variance of vacation period for
the push model. V means vacation pe-
riod.

e E[(C] : mean service period of the pull
model.

e E[V] : mean vacation period of the push

model.

In fact, Var[C] and Var[V] were around
10 ms and 0.1 ms, respectively, and E[(]
was 100 ms while E[V] spanned from 5 to
15 ms.

This paper is organized as follows. In
Section II, we describe a basic mechanism
concerning the stream processing which
consists of source, destination, stream and
filter objects. In Section III, we introduce
the pull and push models for the stream
processing. Section IV contains experimen-
tal data recorded from ComBiStation [9]
which provides hardware facilities for real-
time H.261 [3] and PCM [2] encoding and
decoding. Section V is devoted to the in-
troduction of the M/G/1 multiple vacation
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queuing models including gated and limited
service systems, compares delays of the pull
and push models based on these queuing
formulas, and shows that the experimental
data is consistent with those queuing formu-
las. In addition to this consistency, we also
show that the pull model can take shorter
delay when Var[V] was more than 0.5 ms,
given that E[V] was in the range of 5 to 15
ms, and E[C] was 100 ms with a variance,
Var[C], of 0.1 ms.

Il. STREAM PROCESSING

1. Stream Object

A stream is associated with a particu-
lar medium. Examples of media include
standard raw or compressed media (au-
dio, video, images, graphics, and text)
as well as other media streams including
mouse/keyboard, pen, animation, and mu-
sical instrument digital interface (MIDI)
streams. These streams may originate from
a file, a device, a connection, or other
streams. A stream object reads data from
a source object, performs data type conver-
sion, and delivers data to a destination ob-
ject. Source and destination object mech-
anisms provide access to multimedia data
in a file, device or connection. Data from
a source object can be digitally sampled,
synthesized, or event driven. For synchro-
nization purposes, the source object is re-
sponsible for marking data or time stamp-

ing data with a system clock time value.
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Fig. 8. An example stream flow from a device driver to network.

For streams that originate from a remote

2. Filter Objects

site, the time stamp is corrected, within a
margin of error, for differences between the
remote site and the local site. A level of per-
formance and quality of service between the
destination and the source may be specified
for each stream. The source and destination
objects are different from the sender and re-
ceiver in network communication. Actually
the sender may have a destination object
that provides an access to network connec-
tion for sending data, and the receiver may

also have a source object to receive data.

Before a stream delivers data to a des-
tination, a filter can perform one of sev-
eral types of processing operations on it,
including format conversion (e.g., RGB im-
ages to YUV images), data compression
and decompression, and data type conver-
sion (e.g., speech to text). Varying degrees
of quality of service and performance can
be achieved by having alternate filters for
these operations. The basic elements of a
filter include an input, an output, control
parameters, and a processing program. Fil-
ters can be combined to form filter pipes,
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or collections of filters. If a filter does not
have any control parameters, or if the con-
trol parameters are provided at the time of
processing such as the quantization table
for JPEG compression, then it is said to be
context free. A context-dependent filter op-
erates within a context that can be specified
and controlled independently from the data

stream.

3. An Example Stream

Figure 1 illustrates an example stream
flow from a device driver for CODEC to a
network through a stream object. A frame
generated by a compression algorithm in
the CODEC hardware is transferred to the
device driver, which puts the frame imme-
diately into the system queue. The frame
in the queue is to be fetched (@) based
on first-come-first-service discipline by the
source object. The source object follows ei-
ther the pull or the push model which will
be explained in the next section. The source
object attaches a time-stamp to the fetched
frame and transfers it to the destination ob-
ject through the filter objects () which are
supposed to do the process for format con-
version, scaling, down-sampling, and so on,
for the frame. The destination object finally
converts the frame for the real-time proto-
col which will try to support fast transfer
with lower delay and jitter through network
media. The real-time protocol and its re-
lated topics are out of the scope of this pa-

per.
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4. Performance lIssues

Among the interconnections of vari-
ous objects using the primary objects like
stream synchronizer, splitter, copier, mixer,
binder as well as source, destination and
filters, the connection between the device
driver and stream object is considered as
one of the most sensitive factors for the
performance. The performance is primar-
ily concerned with delay and jitter [6]. In
this paper, we define the delay as the aver-
age waiting time in the system queue. And
the jitter is defined as the variation of the
delay.

Even though the pull model looks advan-
tageous in terms of scheduling in operating
systems since it only offers periodic tasks
concerned with a timer, it necessarily suf-
fers delay of half the scheduling period in
average. But the push model does not have
such intrinsic handicaps. So it is necessary
to compare the two models in diverse situ-
ations where offered loads, stochastic char-
acteristics, e.g., mean and variances, of the
arrival data and their processing time, and

so on are subject to changes.

I1l. IMPLEMENTATION MODELS

We introduce two models in detail, pull
model and push model, for implementa-
tions concerned with the line @), in Fig. 1,
which is considered as one of the major
factors affecting the local delay. The pri-

mary difference between these two is that
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the push model receives events from the de-
vice drivers for encoding hardware, while
the pull model periodically pumps the in-

coming data out from the system buffer.

1. Pull Model

The pull implementation model basi-
cally uses logical time system (LTS) shown
in Fig. 2 as an example situation. LTS deals
with system timer events provided by un-
derlying operating system. It dispatches
each system timer event to proper source
object so that the corresponding stream
gets activated periodically. In order to use
LTS, the source object registers a callback
function Source::TickCallback() to the LTS

with tick interval or period called ‘source
callback interval(SCI).” The LTS manages
an LTS table to store the following infor-

mation:

struct LTS_info {
unsigned int source_id,
unsigned int callback_count_till_now,
unsigned int last_callback_time, /* millisecond */
unsigned int callback_period, /* millisecond */

(void (*)(unsigned int)) pointer_to_callback_function

The LTS registers a timer event callback
function, SystemTimerCallback(unsigned
int current_time) to operating system (see

the line (D in Fig. 2). For this registration,



ETRI Journal, volume 19, number 4, December 1997

the LTS negotiates with operating system
to determine the minimum system timer in-
terval. We call this interval as ‘LTS Call-
back Interval(LCI)’. The operating system
is expected to give a callback at every LCI.
Upon the registration, the operating system
starts to send timer event callbacks (@) to
LTS by calling the SystemTimerCallback
function. Whenever it receives a callback,
the LTS searches the LTS table (®) to cal-
culate temporal distance to the periodical
deadline of each source object according to
the following fragment of C/C++ codes.
The source object with the minimum tem-
poral distance is scheduled to be dispatched
the current time event (@).

SystemTimerCallback(unsigned int current_time){
unsigned int min_distance=INT_MAX;
unsigned int min_distance_id=0;

int distance, i;

for(i=1; i<=n; i++)
{
distance = abs(LTStable]i].last_callback_time
+ LTStable[i].callback_period
— current_time);
if(distance<min_distance)
{
min_distance=distance;
min_distance_id=i;
}
}

if(min_dist > system_timer_callback_period)

return; /* no source object to be called */
LTStable[min_distance_id].callback_count_till_now-+-+;
LTStable[min_distance-id].last_callback-time

= current_time;

(* LTStable[min_distance.id].pointer_to_callback_function)

(current_time);

return;

}
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For example, if the current_time is
199,925 ms and the LCI is 15 ms, then the
first source object in the LTS table in Fig. 2
is selected to be dispatched current timer
event since its SCI is 100 ms and hence the
temporal distance is only 9 ms which is the
minimum distance.

An overall pull mechanism using LTS
is illustrated in Fig. 3. Whenever the
callback function Source::TickCallback() is
called by LTS, it invokes a member func-
tion, say Source:GetFrame(), that per-
forms device-specific operations to fetch a
block of data stored in the system buffer
allocated to device driver (see the line (B
in Fig. 3).

source object executes a member func-

After getting a frame, the

tion, say Stream::DeliverFrame(), to pass
the frame to the stream object. The
Stream::DeliverFrame() passes it through
a series of filters that have been regis-
tered with the stream objects, and then
passes the filtered data on to the destination
object via the Destination::DeliverFrame()
member function (®).

The aforementioned LTS may miss the
deadline of a source object, but the missed
object can be rescheduled for next timer
event if it is not lagged longer than a certain
threshold such as the LCI. Consequently,
the LTS creates a probability distribution
for SCI. The moments for the distribution
are important factors in estimating the av-
erage delay incurred by pull model. If these
moments get larger, then the average delay
gets longer as we explain a queuing theo-
retic interpretation in Section V.
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2. Push Model

While the pull model uses LTS to pump
the data periodically at each callback, the
push model uses events from device drivers
of which scheduling is totally dependent
on the underlying operating system. An
overall mechanism of push model is illus-
trated in Fig. 4. The source object regis-
ters event callback to corresponding device

driver, say device driver Z, and asks that

the driver sends an event whenever it fin-
ishes a transfer of a data block from the
hardware CODEC (see the line (D in Fig. 4)
through DMA, and then waits for a new
event. When the device driver Z is ready to
send an event to the consumer, that is, the
source object, it asks the event scheduler in
the operating system kernel to deliver an
event to the source object ((2). The event

scheduler, then, schedules events from vari-
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ous event senders according to its own pol-
icy, and finally the event from the device
driver Z is scheduled to be executed by wak-
ing up the source object and delivering the
event ((3). When the source object receives
an event, it performs Source::GetFrame() to
read a frame or data block stored at buffers
in the device driver Z (@), and delivers the
frame to the destination object by passing
through filters ((5)). And then it waits next
event again (®).

The delay of push model is closely re-
lated to the event scheduling policy of the

underlying operating system, the priority of
the device driver process, and current sys-
tem load, since the delay is incurred by the
number of higher priority events waiting to
be scheduled by the event scheduler. There-
fore, we can intuitively forecast that the
push model may be relatively disadvanta-
geous in terms of the delay, when the sys-
tem suffers heavy load and event traffic. It
is shown that this forecast is consistent with
the queuing theoretic interpretation in the
Section V.
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IV. EXPERIMENTAL DELAY
ANALYSIS

For our experiment, we defined a com-
mon time structure used for both the de-
vice driver and the stream object. When
the device driver puts frames into the sys-
tem queue, it writes the system time onto
the time structure and attaches it to each
frame. Then the stream object fetches a
frame according to the pull or push model,
and compares the attached time-stamp with
the current system time to get the time de-
lay of the frame as a sample data. All the
results shown in this paper are based on
Windows NT 3.51 operating system, Pen-
tium 100 MHz processors, and EISA bus.
We also used a CODEC board [9] devel-
oped based on the IIT codec chip set and
micro codes for G.711 [2] and H.261 [3].

1. Constant Bit-rate Audio Stream

Figure 5 shows the delay trajectory for
the G.711 coded PCM audio stream. Since
PCM is a constant bit-rate compression al-
gorithm, the compression hardware was set
to send a block of data at every 100 ms. The
horizontal and vertical axis represent frame
sequences and delay in milliseconds, respec-
tively. Figure 5(a) is for the pull model and
shows that the average delay is 364.07 ms
and the delay jitter is in the range of about
50 ms. The jitter is due to the clock drifting
and other factors depending on the schedul-
ing of the Windows N'T 3.51 operating sys-
tem.
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Figure 5(b) is for the push model and
shows that the average delay is 276.89 ms
and the delay jitter is upper bounded by
about 10 ms. This means that the push
model outperforms the pull model for the
PCM constant bit-rate audio stream in
terms of both delay and jitter. Let D =
Ly—S; where Ly is a pull model delay and
S, is a push model delay. Then we can also
think that D = P,— E;, where E; stands for
an event processing delay and P, stands for
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the LTS period of the pull model, because
the P, is applied to both hardware and LTS
periods. So, in the above case where P, was
set to 100 ms, we can derive E; = P, —(Ly—
Sy) =100 — (364.07 — 27.89) = 12.82 ms as

the event processing delay.

2. Variable Bit-rate Video Stream

Figure 6 shows the delay trajectory for
the H.261 video stream. Since H.261 is
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a variable bit-rate compression algorithm,
the compression hardware was set to send a
block of data whenever it is ready to trans-
fer to the system queue through the system
bus. The horizontal and vertical axes repre-
sent frame sequences and delay in millisec-
onds, respectively. Figure 6(a) is for the
pull model and shows that the average de-
lay is 45.14 ms and the delay jitter is in the
range of about 100 ms. The jitter is due to
the scheduling policies of the Windows N'T
3.51 operating system. Figure 6(b) is for
the push model and shows that the average
delay is 10.14 ms and the delay jitter is up-
per bounded by about 10 ms. This means
that the push model outperforms the pull
model for the H.261 variable bit-rate video
stream, too, in terms of both delay and jit-

ter.

V. QUEUING THEORETIC
INTERPRETATION

The M/G/1-multiple vacation queuing
models [7] can be applied to interpret the
above two different implementation models
and experimental results. The pull model is
of gated service systems type, and the push
model is of pure limited service systems
type. We introduce in this chapter their
concepts and formulas on waiting time. In
this paper, the vacation is understood as
the period while the processor is scheduled
to tasks other than the stream under con-

sideration.
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1. Gated Service Systems (Pull Model)

In the gated service system, when the
server returns from a vacation, it accepts
and serves continuously only those messages
that are waiting at that time, deferring the
service of all messages that arrive during the
service period until after the next vacation.
In the multiple vacation model, if the server
returns from a vacation to find no mes-
sages waiting, it begins another vacation
immediately, and continues in this manner
until it finds at least one message wait-
ing upon returning from a vacation. The
length of each vacation is assumed to be in-
dependent and identically distributed. Let
Q(z) be the probability generating func-
tion (PGF) of L, the number of messages
found at the end of each vacation, Q)(1)
be the first moment of the Q(z), and B*(s)
be the Laplace-Stieltjes transform (LST) of
the distribution function (DF) of the service
time, B(x). Then the LST of the waiting
time distribution is as follows [7], assuming
that the service discipline is first-come-first-
served (FCFS):

_MeB ()| —Q(1—s/M)}

Because of gated service, L consists of the
number h of messages in the system when
the server leaves and the number f of mes-
sages that arrive during a vacation:

L=h+f. (20)

We assume that h and f are independent.
If H(z) and F(z) denote the PGF’s of h and
f, respectively, this independence means
that

Q(z) = H(2)F(2) . (21)
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Let V*(s) be the LST of the DF for the va-
cation time V/, and let S*(s) be the LST of
the DF for the length S of a service period.
From the mechanism of gated service, we
get

5%(s) =QIB"(s)] - (22)

The PGF of the number h of messages in
the system when a vacation starts in given
by

H(z) = S* (A= )\2) (23)

and the PGF of the number f of messages
that arrive during the vacation is given by

F(z) =V (A= A\2) . (24)

Assuming that these two numbers h and f
are independent, we substitute (4)~(6) into
(3) to obtain the functional relationship

Q) = QIB' A=A V' (A=Az) . (25)

Let C*(s) be the LST of the DF for the
service cycle time C, which is defined as the
time interval between the terminal points of
two successive vacations. (A service cycle
consists of a service period and a vacation
that follows the service period.) From the
definition of the gated service, we have the
relationship in FCFS service discipline

Q(z)=C"(A=Xz2), (26)

which implies that the number of messages
present in the system at the end of a va-
cation equals the number of messages that
arrive during the preceding service cycle.
Equation (7) is then rewritten as

C'(s) = C*A=AB*()][V*(s) . (27)
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The mean cycle time is given by

H=FH AV g

Therefore, (1) can be rewritten in terms of
the distribution of C as

Wels) =

CPAB () -C()
T

E[C][s—A+AB*(s)
and finally, from (11) we can get
A dWi(s)

BwelZ =E

_(L+p)E(CY
s=0 2}2[Cﬂ

(1) (g

2. Limited Service Systems (Push
Model)

In limited service systems, the number of
messages that are served continuously dur-
ing a service period is limited. In the (pure)
limited service system with multiple vaca-
tions, the server takes a vacation each time
it completes service to a single message. If
there are no messages waiting in the sys-
tem when the server returns from a vaca-
tion, it takes another vacation. Vacations
are repeated until at least one message is
found at the end of the vacation. Let V*(s)
be the LST of the length of a vacation V.
The LST W} (s) of the DF for the message
waiting time in the FCFS limited service

system is obtained by replacing B*(s) with
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B*(s)V*(s) in the formula for the FCFS ex-
haustive service system with multiple vaca-
tions [7] as

W (s) = 1-V*(s) s(1—p—AE[V])

SE[V]  s—A+AB*(s)V*(s)

(13)

and the mean message waiting time is given

by

lz[»@ﬁz]fi d[¢3%(8>

ds

2wy )

A (B +2XE[V]+ Var[V]+ E[V]?
(T ) a0

2

where b is the ith moment of the service
time distribution, B(x).

By comparing (12) and (14), we can pre-
dict performances of each implementation
approach as well as interpret the experi-
mental data. As common features of the
two equations, we see that the waiting time
of both models, F[W¢] and E[Wk]|, mono-
tonically increase when the p increases.
E[W¢] linearly increases with the increment
of Var|C], and so does E[Wk] with Var[V].

Figure 7 shows that the pull model suf-
fers longer waiting time than the push
model when the average vacation period of
the push model, E[V], does not exceed a
threshold which can be derived from (12)
and (14). If the period, E[V], exceeds the
threshold, then the pull model obtains a
shorter waiting time than the push model.
The threshold increases when the variance
of the service cycle time of the pull model,
Var[C], gets larger. This means that the
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Fig. 14. Waiting time differences

push model is beneficial when the system
clock that the pull model uses suffers irregu-
larity (large Var[C]). This usually happens
in commercial non-real-time operating sys-
tems where their schedulers do not support
the earliest-deadline-first policies.

Figure 8 shows that the push model suf-
fers longer waiting time than the pull model
when the variances of the vacation period of
the push model, Var[V], get larger. If the
variance, Var[V], exceeds a certain level,
then the push model never outperforms the
pull model. This usually happens when
the system suffers irregular bulk traffics or
tasks. The pull model obtains a shorter de-
lay than the push model when Var[V] is
more than 0.5 ms that is about 10 percent of
E[V], given that E[V] is in the range from 5
to 15 ms, and E[C] is 100 ms with the vari-
ance, Var[C], 0.1 ms. In contrast, the push

with variances of service cycle time C.

model obtains a shorter delay when Var|[C]
is more than 20 ms, given that E[V] is in
the same range, F[C] is 100 ms, and Var[V]
is 0.1 ms.

The experimental data shown in Figs. 5
and 6 show that the average delay of the
pull model is longer than that of the push
model. On the basis of the above discussion
with the M/G/1-vacation queuing models,
this can be interpreted that the system used
is not suffering any irregular bulky tasks
and the arrival rates of audio and video data
are small enough. Actually, the Var[C]
is more than 10 ms while Var[V] is min-
imum, and the E[C] is set to 100 ms, in
our implementation. All the compression
and decompressions are done in specialized
hardware so that the main processor is left
free from such computation-oriented tasks,

hence consequently deals only with a small
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Fig. 15. Waiting time differences with variances of vacation period V.

offered load, p, lower than 0.03. These facts
make the experimental data consistent with
the above queuing theoretical interpreta-

tions.

VI. CONCLUSIONS

In this paper, we investigated two im-
plementation approaches, pull model and
push model, for handling continuous input
streams from real-time compressors, G.711
and H.261. While the pull model period-
ically pumps out the incoming data from
the system buffer, the push model receives
events from the device drivers for encod-
ing hardware. We experimentally compared
the performance of each in terms of the

delay. We conclude that the push model

outperforms the pull model in usual situa-
tions for both PCM constant bit-rate audio
and H.261 variable bit-rate video streams.
This result was supported by the M/G/1-
vacation queuing theories in this paper, too.
And we also see that the push model may
obtain a longer delay than the pull model
when the system suffers bulky tasks so that
the variance of vacation periods for the push
model exceed a certain threshold.

In the future, we plan to apply this re-
sult for efficient usage of transport proto-
cols [20]-[23]. In the view of the transport
layer, the push model forms M/G/1 queue,
while the pull model forms DX/G/1 queue
where the interarrival time is deterministic
but each arrival forms a batch of frames.
The number of frames in a batch may fol-
low the gamma distribution [24]. We ex-
pect that the push model outperforms the
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alternative in normal transport situations

so that the end-to-end delay is reduced, too.
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