THE INDEX FOR THE TYPE III FACTORS $W^*(\mathcal{R}_G)$

DONG-SEO KIM AND CHANG-HO BYUN

Dept. of Mathematics, Chonnam National University, Kwangju 500-757, Korea.

1. Introduction

From the Jones'index theory [3] for II_1 -factors, many researchers developed index theory for general factors in [3,4,5]. In [2], H. Kosaki extended the notion of an index to any normal faithful conditional expectation from a factor onto a subfactor. Specially, Kosaki's definition of the index of an expectation relies on the notion of spatial derivatives due to A. Connes[6] as well as the theory of operator-valued weights due to U. Haagerup[7].

In § 2, we define the index for a pair of factors and we have an example. Also we show the relations of each index and the some properties of the index in the case of type II_1 factor pairs.

In § 3, we construct the group von Neumann algebras $\mathcal{W}^*(\mathcal{R}_G)$ on the Hilbert space $L^2(\mathcal{R}_G)$ and also we study the relation between $L^2(X) \otimes l^2(G)$ and $\mathcal{W}^*(\mathcal{R}_G)$.

Finially, we calculate the index for the pair of type III factors $\mathcal{W}^*(\mathcal{R}_G)$.

2. The Index for Factors $\mathcal{W}^*(\mathcal{R}_G)$

If M is a finite factor acting on a Hilbert space \mathcal{H} with finite commutant M', the coupling constant $dim_M(\mathcal{H})$ of M is defined as $tr_M(E_\omega^{M'})/tr_{M'}(E_\omega^M)$ where ω is a non-zero vector in \mathcal{H} , tr_A denotes the normalized trace and E_ω^A is the projection onto the closure of the subspace $A\omega$.

Received May 23, 1997.

DEFINITION 2.1. If N is a subfactor of M, the number $dim_N(\mathcal{H})/dim_M(\mathcal{H})$ is called the (global) Index of N in M and is written [M:N]. Note that $[M:N]=\infty$ means that N' is infinite for any normal representation of M.

Since $[M:N] = dim_M(L^2(M,tr)), [M:N]$ is a conjugacy invariant for N as a subfactor of M.

Let M be a finite von Neumann algebra with faithful normal normalized trace tr and let N be a von Neumann subalgebra. By [8] there is a conditional expectation $E_N: M \to N$ defined by the relation $tr(E_N(x)y) = tr(xy)$ for $x \in M, y \in N$. The map E_N is normal and has the following properties:

 $E_N(axb) = aE_N(x)b$ for $x \in M$, $a, b \in N$ (the bimodule property)

$$E_N(x^*) = E_N(x)^*$$
 for all $x \in M$

$$E_N(x^*)E_N(x) \leq E_N(x^*x)$$
 and $E_N(x^*x) = 0$ implies $x = 0$.

Let ω be the canonical cyclic trace vector in $L^2(M,tr)$. Identify M with the algebra of the left multiplication operators on $L^2(M,tr)$. The conditional expectation E_N extends to a orthogonal projection e_N on \mathcal{H} via $e_N(x\omega)=E_N(x)\omega$. We denote by $< M, e_N >$ the von Neumann algebra on $L^2(M,tr)$ generated by M and e_N . Let J be the conjugate linear isometry of $L^2(M,tr)$ extending the map $x \to x^*$ on M.

Proposition 2.2 [1,3].

- (i) $N' = \{M' \cup \{e_N\}\}''$.
- $(ii) < M, e_N > = JN'J.$

DEFINITION 2.3. If L is a subalgebra of $\langle M, e_N \rangle$, a trace Tr on $\langle M, e_N \rangle$ is called a (τ, L) trace if Tr extends tr and $Tr(e_N x) = \tau tr(x)$ for $x \in L$.

PROPOSITION 2.4 [3]. If M and N are factors then $[M:N] < \infty$ iff $< M, e_N >$ is finite and in this case the canonical trace Tr on $< M, e_N >$ is a (τ, M) trace where $\tau = [M:N]^{-1}$. In particular $Tr(e_N) = [M:N]^{-1}$. Also $[< M, e_N >: M] = [M:N]$.

Let N be a proper von Neumann subalgebra of the finite von Neumann algebra M with faithful normal normalized trace tr.

Suppose there is a faithful normal (τ, M) trace Tr on $< M, e_N >$. Then we may form the extension $<< M, e_N >, e_M >$.

THEOREM 2.5 [1,3]. Let M be a von Neumann algebra with faithful normal normalized trace tr. Let $\{e_i|i=1,2,\cdots\}$ be projections in M satisfying

- a) $e_i e_{i\pm 1} e_i = \tau e_i$ for some $\tau \leq 1$
- b) $e_i e_j = e_j e_i$ for $|i j| \geq 2$
- $c) tr(we_i) = \tau tr(w) if w is a word on 1, e_1, e_2, \cdots, e_{i-1}$

Then if P denotes the von Neumann algebra generated by the e'_i s,

- (i) $P \cong R(\text{the hyperfinite } II_1 \text{ factor}),$
- (ii) $P_{\tau} = \{e_2, e_3, \dots\}$ " is a subfactor of P with $[P: P_{\tau}] = \tau^{-1}$,
- (iii) $\tau \leq \frac{1}{4}$ or $\tau = \frac{1}{4} \sec^2 \frac{\pi}{n}, n = 3, 4, \cdots$

LEMMA 2.6. If N is a subfactor of the II_1 factor M then either $[M:N] \geq 4$ or $[M:N] = 4\cos^2\frac{\pi}{n}$ for some $n \geq 3$.

Proof. If $[M:N] < \infty$, define the increasing sequence M_i , $i=0,1,2,\cdots$ of II_1 factors by the relations $M_0=M, M_1=< M, e_N>$, $M_{i+1}=< M_i, e_{M_{i-1}}>$ for $i\geq 1$. The inductive limit becomes a II_1 factor with faithful normal normalized unique trace tr. If $\tau=[M:N]^{-1}$ and $e_i=e_{M_i}$ then the e_i' s satisfy the conditions of theorem 2.5 by proposition 2.4. Thus, by theorem 2.5, either $[M:N]\geq 4$ or $[M:N]=4\cos^2\pi/n, n=3, 4\cdots$.

EXAMPLE 2.7. If M is a II_1 factor and G is a finite group of outer automorphisms of M with fixed point algebra M^G , $[M:M^G] = |G|$.

Proof. Let M act on $L^2(M, tr)$ and let u_g be the unitaries extending the action of G on M. Then the $u'_g s$ act on M and it is that $(M^G)'$ is isomorphic in the obvious way to $M' \rtimes G$. The projection onto $\overline{M^G}$ is $|G|^{-1} \sum_{g \in G} u_g$ by the isomorphism with the cross product its trace is $|G|^{-1}$. Hence $[M:M^G] = |G|$.

The H.Kosaki's index based on Haagerup's theory on the operator-valued weights [7] and Connes' spatial theory [6]. Let M be an

arbitrary factor with a subfactor N. We assume the existence of a normal conditional expectation $E: M \to N$. By E, IndexE will be defined. If M and N are II_1 factors, the index of the canonical conditional expectation determined by the unique normalized trace on M is exactly Jones' index [M:N] [3] based on the coupling constant.

Let M be a von Neumann algebra on a Hilbert space \mathcal{H} and ψ be a normal faithful semifinite (n.f.s.) weight on the commutant M'.

Let ϕ be a n.f.s. weight on M and let N be a von Neumann subalgebra in M. An operator-valued weight $E:M\to N$ is a map $M^+\to \hat{N}_+$ such that

- (a) E is additive,
- (b) $E(axa^*) = aE(x)a^*, x \in M_+, a \in N$.

The set of all (n.f.s.) operator-valued weights from M to N is denoted by P(M, N). Haagerup showed that

$$P(M,N) \neq \emptyset \Leftrightarrow P(N',M') \neq \emptyset$$

and constructed an order-reversing bijection between P(M,N) and P(N',M'). By the spatial theory, it is possible to construct the canonical order-reversing bijection from P(M,N) onto P(N',M') (denoted by $E \to E^{-1}$). For a given $E \in P(M,N)$, the canonical $E^{-1} \in P(N',M')$ is characterized by

$$d(\phi \circ E)/d\psi = d\phi/d(\psi \circ E^{-1}).$$

Let M be a $(\sigma$ -finite) factor on a Hilbert space \mathcal{H} with a subfactor N. Since E is an operator-valued weight, we get $E^{-1} \in P(N', M')$. For any unitary $u \in M'$, we have

$$uE^{-1}(1)u^* = E^{-1}(u1u^*) = E^{-1}(1).$$

Since M is a factor, this means that $E^{-1}(1)$ is a scalar.

DEFINITION 2.8. IndexE is the scalar $E^{-1}(1)$.

When the $Index \quad E < +\infty$, the operator-valued weight $E^{-1} \in P(N', M')$ is a scalar multiple of a conditional expectation.

3. The von Neumann algebra $\mathcal{W}^*(\mathcal{R}_G)$

Let (X, μ) be a Lebesgue space and G be a countable group acting on X as automorphisms. An equivalence relation \mathcal{R}_G is a subset $\{(x,y) \in X \times X | \exists g \in G \text{ s.t } y = gx\} \text{ of } X \times X$. Then (\mathcal{R}_G, μ_l) becomes a Lebesgue space, where μ_l is a left counting measure. Hence we define a Hilbert space $L^2(\mathcal{R}_G, \mu_l)$ on (\mathcal{R}_G, μ_l) . If f is integrable on (\mathcal{R}_G, μ_l) ,

$$\int_{\mathcal{R}_G} f(x,y) d\mu_l(x,y) = \int_X \sum_{x \sim y} f(x,y) d\mu(y)$$

For $f, g \in L^2(\mathcal{R}_G, \mu_l)$, the operation of f and g on $L^2(\mathcal{R}_G, \mu_l)$ is the convolution product of f and g as

$$(f*g)(x,y) = \sum_{z \sim x} f(x,z)g(z,y).$$

We shall construct the von Neumann algebra $\mathcal{W}^*(\mathcal{R}_G)$ on $L^2(\mathcal{R}_G, \mu_l)$. Let \mathcal{R}_G be a countable relation on (X, \mathfrak{B}, μ) . For $f \in L^2(\mathcal{R}_G, \mu_l)$ with $supp\ f\ small\ (i.e,\ f(x,gx)=0\ a.e.\ except\ for\ finitely\ many\ g), <math>L_f: L^2(\mathcal{R}_G, \mu_l) \to L^2(\mathcal{R}_G, \mu_l)$ is defined by $L_fg \equiv f * g$ for $g \in L^2(\mathcal{R}_G, \mu_l)$. Then we have $L_fL_g = L_{f*g}$, and $L_f^* = L_{f^*}$ with $f^*(x,y) = \bar{f}(y,x)$.

DEFINITION 3.1. The operators L_f form a *-algebra of operators with unit; we denote its weak closure by $\mathcal{W}^*(\mathcal{R}_G)$.

For $f \in L^2(\mathcal{R}_G, \mu_l)$ with $supp f \subseteq D = \{(x, x) | x \in X\}$ the diagonal, we define $F \in L^{\infty}(X, \mu)$ by

$$f(x,y) = \begin{cases} F(x) & x = y \\ 0 & x \neq y. \end{cases}$$

Hence we can correspond $\{L_f|supp f\subseteq D\}$ to $L^{\infty}(X,\mu)$. For $f, f'\in L^2(\mathcal{R}_G)$ with $supp\ f$ in D, if $f(x,y)=\delta_{xy}F(x)$ and $f'(x,y)=\delta_{xy}F'(x)$, then

$$(f * f')(x,y) = \sum_{z \sim x} f(x,z)f'(z,y) = \delta_{xy}F(x)F'(x).$$

Therefore $\{L_f|suppf \subseteq D\}$ already forms an abelian von Neumann subalgebra \mathcal{A} of $\mathcal{W}^*(\mathcal{R}_G)$, isomorphic to $L^{\infty}(X)$.

PROPOSITION 3.2 [9]. The abelian algebra \mathcal{A} is a MASA (maximal abelian subalgebra) in $\mathcal{W}^*(\mathcal{R}_G)$. i.e, $\mathcal{W}^*(\mathcal{R}_G) \cap \mathcal{A}' = \mathcal{A}$.

We suppose that X is \mathbb{R} . Let (X, \mathfrak{B}, μ) be a Lebesgue space and G_0 be a countable group of all mappings $g = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$ of $x \mapsto ax + b$, where $a, b \in \mathbb{Q}$, a > 0. That is, $G_0 = \{g = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$: $X \to X | a, b \in \mathbb{Q}, a > 0 \}$. Let $G_0' = \{g = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} | g \in G_0 \}$ be a subgroup of G_0 . Then G_0' acts ergodically on X. Hence G_0 acts ergodically.

Let
$$G = \{g = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} : X \to X | a, b \in \mathbb{Q}, a \neq 0 \}.$$

Proposition 3.3 [9]. $L^2(X) \otimes l^2(G) \cong L^2(\mathcal{R}_G)$.

LEMMA 3.4 [9]. For $A = L^{\infty}(X)$ and a unitary V as in proposition 3.3,

$$V(\mathcal{A} \rtimes_{\alpha_g} G)V^{-1} = \mathcal{W}^*(\mathcal{R}_G).$$

4. Main Results

Let $\Gamma(g) = \{(x, gx) | x \in X\}$ be the graph of g in \mathcal{R}_G . If $L_f \in \mathcal{W}^*(\mathcal{R}_G) \cap \mathcal{W}^*(\mathcal{R}_G)' \subseteq \mathcal{W}^*(\mathcal{R}_G) \cap \mathcal{A}' = \mathcal{A}$, then L_f commutes with $L_{\chi_{\Gamma(g)}}$ where \mathcal{A} is as in proposition 3.2 and $\chi_{\Gamma(g)}$ is the characteristic function on $\Gamma(g)$. For $L_f \in \mathcal{A}$ and $f(x, y) = \delta_{xy} F(x)$, F(gx) = F(x), since

$$L_{\chi_{\Gamma(g)}}L_fh(x,gx)=L_fL_{\chi_{\Gamma(g)}}h(x,gx) \quad \text{for all} \quad h\in L^2(\mathcal{R}_G,\mu_l).$$

Thus we have the following theorem.

THEOREM 4.1. $W^*(\mathcal{R}_G)$ is a factor of type III.

Let G be a countable group of all mappings $g = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$ of $x \mapsto ax + b$, where $a, b \in \mathbb{Q}$, $a \neq 0$. We denote by A = 0

 $\{(x,y)\in\mathcal{R}_G|\exists g\in G_0\ s.t\ y=gx\}, B=\{(x,y)\in\mathcal{R}_G|\exists g\in G\setminus G_0\ s.t\ y=gx\}.$ Also we define the multiplication operator M_{χ_A} by $M_{\chi_A}k(x,y)=\chi_A(x,y)k(x,y).$ Now we define $E:\mathcal{W}^*(\mathcal{R}_G)\to\mathcal{W}^*(\mathcal{R}_{G_0})$ by $E(L_f)k(x,y)=L_{M_{\chi_A}f}k(x,y)$ for $k\in L^2(\mathcal{R}_{G_0}).$

LEMMA 4.2. E is a (n.f.s.) conditional expectation.

Proof. For $L_h \in \mathcal{W}^*(\mathcal{R}_{G_0}), L_f \in \mathcal{W}^*(\mathcal{R}_G), \text{ and } k \in L^2(\mathcal{R}_{G_0}),$

$$(E(L_{h}L_{f}L_{h^{*}})k)(x,y) = (E(L_{h^{*}*f*h^{*}})k)(x,y)$$

$$= L_{M_{XA}}h_{*}f_{*}h_{*}k(x,y)$$

$$= \sum_{g \in G_{0}} h * f * h^{*}(x,gx)k(gx,y)$$

$$= \sum_{g \in G_{0}} \sum_{w,v \sim x} h(x,v)f(v,w)h^{*}(w,gx)k(gx,y)$$

$$= \sum_{v,w \sim x} h(x,v)f(v,w)L_{h^{*}}k(w,y)$$

$$= \sum_{v \sim x} h(x,v)L_{f}(L_{h^{*}}k)(v,y)$$

$$= (L_{h}(L_{M_{XA}}f(L_{h^{*}}k)))(x,y)$$

$$= (L_{h}E(L_{f})L_{h^{*}}k)(x,y).$$

Also we have $(E(L_{\chi_{\Gamma(g_1)}})k)(x,y) = L_{M_{\chi_A}\chi_{\Gamma(g_1)}}k(x,y) = L_{\chi_{\Gamma(g_1)}}k(x,y)$

because of $M_{\chi_A}\chi_{\Gamma(g_1)}k(x,y)=\chi_{\Gamma(g_1)}k(x,y)$ for $g_1=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ in G. Since $L_{\chi_{\Gamma(g_1)}}$ is identity in $\mathcal{W}^*(\mathcal{R}_G)$, E is a conditional expectation. Let $L_{f_i}\in\mathcal{W}^*(\mathcal{R}_G)\nearrow a\in\mathcal{W}^*(\mathcal{R}_{G_0})$. Since $E(a)-E(L_{f_i})=(a-L_{f_i})|_{L^2(\mathcal{R}_{G_0})},\ E(L_{f_i})\nearrow E(a)$. So E is normal. Let $E(L_{f^*}L_{f})=0$ for $L_{f}\in\mathcal{W}^*(\mathcal{R}_G)$. For $k\in L^2(\mathcal{R}_{G_0})$ and

$$\begin{split} l &\in L^2(\mathcal{R}_{G_0})^\perp, \\ &< E(L_{f^*}L_f)k, k> = \int_X \sum_{y \sim x} (E(L_{f^**f})k)(x,y)\overline{k(x,y)}d\mu(y) \\ &= \int_X \sum_{y \sim x} (L_{M_{\chi_A}}f^{**f})k(x,y)\overline{k(x,y)}d\mu(y) \\ &= \int_X \sum_{y \sim x} \sum_{g \in G_0} f^**f(x,gx)k(gx,y)\overline{k(x,y)}d\mu(y) \\ &= \int_X \sum_{y \sim x} \sum_{g \in G_0} \sum_{h \in G} f^*(x,hx)f(hx,gx)k(gx,y)\overline{k(x,y)}d\mu(y) \\ &= \int_X \sum_{y \sim x} \sum_{g \in G} \sum_{h \in G} f^*(x,hx)f(hx,gx)M_{\chi_A}k(gx,y)\overline{M_{\chi_A}k(x,y)}d\mu(y) \\ &= < L_{f^*}L_fM_{\chi_A}k, M_{\chi_A}k>, \text{and} \\ &< L_{f^*}L_fM_{\chi_B}l, M_{\chi_B}l> \\ &= \int_X \sum_{y \sim x} \sum_{g \in G} \sum_{h \in G} f^*(x,hx)f(hx,gx)M_{\chi_B}l(gx,y)\overline{M_{\chi_B}l(x,y)}d\mu(y) \\ &= \int_X \sum_{y \sim x} \sum_{g \in G_0} \sum_{h \in G} f^*(x,hx)f(hx,gx)l(gx,y)\overline{l(x,y)}d\mu(y) \\ &= \int_X \sum_{y \sim x} (L_{M_{\chi_A}}f^{**f})l(x,y)\overline{l(x,y)}d\mu(y) = < E(L_{f^*}L_f)l, l>. \end{split}$$

Thus E is faithful since $L_f = 0$ by above. We put

$$egin{aligned} n_E &= \{L_f \in \mathcal{W}^*(\mathcal{R}_G) | \|E(L_f \cdot L_f)\| < \infty \} \ \\ m_E &= n_E^* n_E = span \{L_f \cdot L_h | L_f, L_h \in n_E \} \ \\ D_E &= \{L_f \in \mathcal{W}^*(\mathcal{R}_G)_+ | \|E(L_f)\| < \infty \} \end{aligned}$$

Let $L_f \in m_E$. Since D_E is dense in m_E , there exist net $\{L_{f_i}\}$ of D_E with $L_{f_i} \nearrow L_f$ and $E(L_{f_i}) \nearrow E(L_f)$ by the normality of E. Hence E is semifinite.

Let $\phi \in \mathcal{W}^*(\mathcal{R}_{G_0})_*^+$ be a fixed normal faithful state. By representing $\mathcal{W}^*(\mathcal{R}_G)$, we assume $\phi \circ E = \omega_{\xi_0}$ with a cyclic and separating vector ξ_0 . Let e be the projection defined by $e(L_f \xi_0)(x, y) = E(L_f)\xi_0(x, y)$, for $L_f \in \mathcal{W}^*(\mathcal{R}_G)$.

THEOREM 4.3. Let G_0 be a countable subgroup of G as above and let $E: \mathcal{W}^*(\mathcal{R}_G) \to \mathcal{W}^*(\mathcal{R}_{G_0})$ be a (n.f.s.) conditional expectation. Then Index E = 2.

Proof. Let $g_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $g_2 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$. Then G is the disjoint union of g_1G_0 and g_2G_0 . Let J_G be the modular conjugation of $\mathcal{W}^*(\mathcal{R}_G)$. By the basic construction, $<\mathcal{W}^*(\mathcal{R}_G), e>=J_G\mathcal{W}^*(\mathcal{R}_G)'J_G$ is the basic extension of $\mathcal{W}^*(\mathcal{R}_G) \supseteq \mathcal{W}^*(\mathcal{R}_{G_0})$. Also $\{L_{\chi_{\Gamma(g_i)}}eL_{\chi_{\Gamma(g_i)}}^*\}_{i\in 1,2}$ is a partition of the unit of $<\mathcal{W}^*(\mathcal{R}_G), e>$. By the U. Haagerup [12], there exist the (n.f.s.) operator valued weight $E^{-1}:\mathcal{W}^*(\mathcal{R}_{G_0})' \to \mathcal{W}^*(\mathcal{R}_G)'(J_{G_0}E(L_f)J_{G_0} \mapsto E^{-1}(J_{G_0}E(L_f)J_{G_0}))$. Define $E_1:<\mathcal{W}^*(\mathcal{R}_G), e>\to \mathcal{W}^*(\mathcal{R}_G)$ by $E_1=J_GE^{-1}(J_{G_0}:J_{G_0})J_G$. Then E_1 is the (n.f.s.) operator valued weight $<\mathcal{W}^*(\mathcal{R}_G), e>$ into $\mathcal{W}^*(\mathcal{R}_G)$. Hence

$$IndexE = E^{-1}(1) = E_1(1) = E_1(\sum_{i=1}^{2} L_{\chi_{\Gamma(g_i)}} eL_{\chi_{\Gamma(g_i)}}^*) = 2.$$

References

- F.M.Goodman, P.de la Harpe, V.F.R.Jones, Coxeter Graphs and Towers of Algebras, Springer-Verlag, 1989.
- 2. H.Kosaki, Extension of Jones' Theory on Index to Arbitrary Factors, J. Funct. Anal. 66 (1986).
- 3. V.F.R.Jones, Index for subfactors, INvent math. 72 (1983).
- 4. H.Choda, Full factors with non integer index, preprint.
- 5. Longo, Index for subfactors and statistics of quantum fields I, Comm.Math. Phys. 126 (1989).
- 6. connes, Spatial theory of von Neumann algebras, J. Funct. anal. 35 (1980).
- 7. U.Haagerup, Operator-valued weights in von Neumann algebras I, II, J. Funct. Anal. 32,33 (1979).
- 8. Umegaki, Conditional expectation in an operator algebra I, Tohoku math.J 6 (1954).
- 9. Dongseo Kim, Changho Byun, Notes on the Factor $W^*(\mathcal{R}_G)$ over the Hilbert space, to appear.