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Let R be a commutative Noetherian ring, M be an R-module.
Using the minimal injective resolution of M, H. Bass defined the
ith invariant p;(P, M) for any P € SpecR in [1]. In general, it
is noted that the most nice properties of u;(P, M) depend on M
being finitely generated. In [11] Xu studied the minimal injective
resolution of modules, over a Gorenstein ring, of finite flat dimen-
sion and did not assume them to be finitely generated. He showed
that, R is Gorenstien ring if and only if for any R-module M with
finite flat dimension s, p;(P,M) # 0 only if ¢« < ht(P) < i+ s.
The aim of the present paper is to obtain information about the
minimal injective resolutions of arbitrary modules of finite flat
dimension over Cohen-Macaulay ring. For instance, Theorem 4
shows that R is Cohen-Macaulay if and only if for any R-module
M with finite flat dimension s, pui(P, M) # 0 only if ht(P) < i+s.
Also, in this note, we give another version of Xu’s theorem [11,
2.2] which provides a quick proof for [11, 2.2 (1) => (2))]. The
proof of this result is concerned with a complex C{U, M) of R-
modules which involves modules of generalized fractions derived
from M and poor M-sequences. '

Throughout this paper, R is a commutative Noetherian ring
with the identity and M is an R-module. For any R-module X,
f.dimp X stands for the flat dimension of X, inj.dimp X stands
for the injective dimension of X, and E(X) stands for its injective
envelope. All other notation is standard. For instance, ht(P)
means the height of P, and X p means the localization of R-module
X at a prime P. We use N to denote the set of positive integers.
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Let us recall the definition of the M-grade of an ideal a of R
(Note that M is not assumed to be finitely generated).

DEFINITION 1. Let a be an ideal of R. The M-grade of a,
written grade(a, M), is the least integer r such that Ext’j?(—’}, M) #
0 if this exists, and oo otherwise.

REMARKS 2. Recall that elements aq,...,a, of R are said to
form a poor M-sequence (of length n) if, for all 4 = 1,...,n, the
element a; is not a zerodivisor on M/ Z;;ll a;M.

(i) If a contains a poor M-sequence of length r, then
grade(a, M) > r.

(ii) If M is finitely generated and M # aM, then grade(a, M)
is equal to the common length of all maximal M-sequences
contained in a.

PROPOSITION 3. Let a be an ideal of R. Then

grade(a, R) < grade(a, M) + f.dimpg M.

Proof. We need to prove our assertion only in the case that
f.dimp M = s and grade (a, M) =t are finite. We use induction
on s. To begin, note that in the case when s = 0 the claim imme-
diately follows; because every R-sequence is a poor M-sequence.
Suppose that f.dimg M = s > 0 and that the result has been
proved for all modules with flat dimension less than s. Consider
an exact sequence

O»——-)N«—->F»—-+‘M—->0

with F flat. Since grade(a, R) < grade(a, F), it is enough to prove
the claim under assumption grade(a, F') > t. Using the long exact
sequence

0— HomR(fj—,N) — Homg(g,F) — HomR(—?,M) — .

R . R
— Ext}z(g,N) — Ext‘R(g—,F) —> Bxti (o, M) — ...
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we may deduce that grade (a, N) = t+ 1. Now it follows from the
inductive hypothesis that grade(a, R) < grade(a, N)+f. dimg N =
t + s. The inductive step is therefore complete.

A manimal injective resolution of M is an exact sequence

0—M-—E, 2 % LB %

such that for each ¢« > 0, E; is an injective envelope of ker(d;).
It is well known that each F; has a unique decomposition F; =
@ E(L), P € SpecR [5]. If u;(P, M) denotes the ith Bass num-
ber, it can be written in the form

E= @ w(P,M)ER/P).
PeSpec R

Also, by [1, 2.7], u;(P, M) can be described as the dimension of
a vector space: if k(P) denote the residue field of the local ring
Rp, then

pi(P, M) = dimy(py Exty , (k(P), Mp) = dimy(p)(Exth(R/P, M))p.

THEOREM 4. The following statements are equivalent:

(1) R is Cohen-Macauley,
(2) Any R-module M with f.dimg M = s < oo admits a
minimal injective resolution as

0—M— P wm(P,M)ER/P)— ...
ht(P)<s
— D  m(P,M)ER/P)— ...
ht(P)<k+s

Proof. (1) == (2) Suppose that E(R/P) is contained in E;(M).
Then Exth(R/P, M) # 0 and hence grade (P, M) < i. Therefore,
by Proposition 3, grade (P,R) < ¢ + s. Hence ht(P) < i + s;
because R is Cohen-Macaulay.
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(2) = (1) Suppose that R admits a minimal injective resolu-
tion

0—R-—FEy— FE,— ...~ E; — ...

such that ht(P) < ¢ whenever E(R/P) C E;. Let m be a maximal
ideal of R. If ht(P) < ht(m) then, by [10, 2.31], H3(E(R/P)) = 0;
so HJ(F;(R)) = 0 for all i < ht(m) (because local cohomology
functor ‘Commutes’ with arbitrary direct sums). This implies
that H.(R) = 0 for all : < ht(m). Therefore, by [3, 3.10] or [4,
2.1], grade (m, R) > ht(m). It therefore follows that R is Cohen-
Macaulay.

From the above argument, we may establish the following.

COROLLARY 5. The following statements are equivalent:

(1) R is Cohen-Macaulay,
(2) For any R-module M with f.dimg M = s < oo,

Eo(M)= € uo(P,M)E(R/P)
ht(P)<s

(3) For any finitely generated R-module M with f.dimg M =
5 < 00,

Eo(M)= €D #(P,M)E(R/P).
ht(P)<s

Proof. In view of Theorem 4, the only non-obvious point is to
show that (3) = (1). For any maximal ideal m of R, let z,, ..., x,

be a maximal K-sequence in m. The f. dimpg (ETiTJ = t. Set

L = (—5;5—*5-3 Since R/m C L, we have that E(%) C Eu(L).
Hence by assumption ht(m) < ¢t and the result follows.

Reminder 6 : Complexes of Modules of Generalized Fractions.
The concept of a chain of triangular subsets on R is explained
in {7, p. 420]. Such a chain U = (U;);en determines a complex

055 M S UT'M — . —> UM <5 UM —
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of R-modules and R-homomorphisms which we denote by C(U, M).
Here UM is the module of generalized fractions of M with re-
spect to the triangular subset U; of R*, and the homomorphisms

' (for i > 0) are given by the following formula: €%(m) = o

for all m € M and ¢ (=) = =T for all m € M and

oyl

(u1,...,u;) € U;. For each i € N, we set
Ui ={(v1,...,ui) € R* uy,...,u; form a poor R-sequence} .

It is easy to check that the family U = (U;)ien is a chain of
triangular subsets on R; and so we may form the complex C(U, M)
as above.

The next proposition provides an explicit description of the
minimal injective resolution of a flat module over Gorenstein ring.

PRrOPOSITION 7. The following statemants are equivalent:

(1) R is Gorenstein,
(2) For any flat R-module F, C(U, F) provides the minimal
injective resolution for F'.

Proof. (1) == (2). By [9, 5.8] C(U, R) provides the minimal
injective resolution for R. Now, in view of [9, 3.17] and [8, 3.83],
C(U,F) is an injective resolution for F. Also, it is immediate
consequence of [9, 5.1 that, if U;*F # 0, then it is an essential
extension of ime*~!.

(2) = (1) By assumption, the complex

0—R-—U'R—U;?R— ... - U'R — ...

is a minimal injective resolution for R. For any maximal ideal m
of R we have, by [2, 3.1], that (U;*R)mw = 0 for all i > ht(m) + 1.
Then passing to localization, we see that inj.dimg_ Ry, is finite.
It follows that R is Gorenstein.

We are now in a position to establish and prove another version
of [11, 2.2] that was promised earlier at the beginning of the paper.



58 K. Khashyarmanesh and SH. Salarian

THEOREM 8. The following statements are equivalent:

(1) R is Gorenstein,
(2) Any R-module M with fdimp M = s < oo admits a
minimal injective resolution as

0—M— P plP,M)ER/P)— ...
0<ht(P)<s

— P  wm(P.M)ER/P)— ...

i<ht(P)<i+s

Proof. By [6, 18.8], we only need to show that (1) = (2).
We prove this by induction on s. Consider the case s = 0. If
E(R/P) C Ei(M), then, by Proposition 7, P € Supp(U [ 'M).
Hence, by [2, 3.1], ht(P) > i and so, by Theorem 4, the result
follows. Now, suppose inductively that s > 1 and the result has
been proved for smaller values of s. As usual, we consider an exact
sequence 0 — N — F — M -— 0 with F flat. Let E(R/P) C
E;(M). Then (Exth(R/P,M)), # 0. If (Exty(R/P,F)), # 0
then by the case s = 0, ht(P) = i. If (Extx(R/P,F)), = 0,
then by applying the above short exact sequence we deduce that
(Exti*(R/P,N)), # 0. Hence by inductive hypothesis i + 1 <
ht(P) < (44 1)+ (s — 1). Thus if E(R/P) C E;(M), then i <
ht(P) < i+ s. Now the result follows, by induction.
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