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0. Introduction

This paper continues the development of the theroy of general-
ized Hughes complexes for a module M over a commutative ring
R which is not necessarily noetherian. These complexes, intro-
duced by R.Y. Sharp and M. Yassi in [8] provide an ‘umbrella
concept’ which covers all the complexes of modules of generalized
fractions of type described by L.’ Carroll in [5], and all the al-
gebraic Cousin complexes (in Noetherian case) previously studied
by R.Y. Sharp.

One of the main results of [8] is Theorem 3.5, which shows
that, given a chain U of triangular subsets on R(see [5, p.420]),
there is a family S(U) of systems of ideals of R(see (8, 2.6]), such
that when R is Noetherian, the complex of modules of general-
ized fractions C'(U, M) is isomorphic over Idys to the generalized
Hughes complex H(S(U), M). (we say that a morphism of com-
plexes ¥ = (¥*);»_5: Ct —> Cf isover ldy if ™1 : M — M
is the identity mapping Idps). At the end of [8], it was asked
whether there is any analogue of that theorem in the case when
R is not necessarily Noetherian.
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The purpose of [7] is to address that question. In [7] it has
been proved that, in general, there is a morphism of complexes
(over Idas)

6 = (8')iz—2: H(SU), M) — CU, M)

which is isomorphism when R is N-ring (and, in particular, when
R is Noetherian). They also gave an example to show that © is
not always an isomorphism. (Note that this example does not
provide a negative answer to above mentioned question).

In this paper we intend to respond to that question more com-
pletely. We show that if © is not an isomorphism, then there
is no isomorphism of complexes over Idys from H(S(U), M) to
C(U, M). This gives a negative answer to Sharp and Yassi’'s ques-
tion in general case (see 4.4). We also establish a necessary and
sufficient condition for the above complexes to be isomorphic.

In section 2 we introduce the notion of divisibility in certain
generalized Hughes complex H(S, M). This notion can be used
when one wishes to work with elements in the terms of the complex
H(S,M).

In section 3, by using the above notion, we define explicity a
morphism of complexes H(S, M) — C(U, M) over Idps and we
prove that this morphism is unique over Idys. Moreover, in 3.3
we establish equivalent conditions for © to be an isomorphism.

In the final section, which is devoted to applications of divisi-
bility, we prove an stronger form of the main result of [8] and [7]
(see 4.3). Also, in this section we provide a necessary and suffi-
cient condition for the exactness of the certain generalized Hughes
complexes H(S, M).

1. Preliminaries

Throughout this paper, R will denote a commutative ring (with
non-zero identity) and M will denote an R-module; C(R) will de-
note the category of all R-modules and R-homomorphisms. We
use Ny (respectively N) to denote the set of non-negative (respec-
tively positive) integers. For any n € N, D,(R) denotes the set
of n x n lower triangular matrices over R. Incidently we denote
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the entries of each element of D, (R) by the corresponding small
letters. For H = (hy;) € D,(R), the determinant of H is denoted
by |H| and h;; is denoted by h; for 1 < i < n. We use T to denote
matrix transpose. Given H € D,(R) with n > 1 we also use H*
to denote the (n—1) x (n—1) submatrix of H obtained by deletion
of the nth row and nth column of H.

1.1 REMINDER: COMPLEXES OF MODULES OF GENERALIZED
FRACTIONS.

The concept of a chain of triangular subsets on R is explained
in [5, p.420] and (8, 2.3]. Such a chain U = (U, ),en determines a
complex of modules of generalized fractions

OaMfiUfle;ngM-a---—+U;"M5?>U;;‘1‘1M—+---

in which e®(m) = m/(1) for all m € M and

m m

e” =
((’U.l,"',un)) (ulv"'aunal)

foralln € N, m € M and (uy,- - ,up) € U,. We shall denote this
complex by C(U, M). We shall need to use many of the properties
of modules of generalized fractions reviewed in [8, section 2.

1.2 A REVIEW ON THE CONSTRUCTION OF GENERALIZED HUGHES
COMPLEXES.

A system of ideals of R [1] is a non-empty set ® of ideals of R
such that, whenever a,b € @, there exists ¢ € ® such that ¢ C ab.

Note that (see [8, 1.2]) ® gives rise to an additive, left exact
functor

Dg := lim Hompg(b, .)
bed

from C(R) to itself. Given a € & and an R-module G, we shall
assume that [ | : Hompg(a, G) — Dg(G) is the canonical homomor-
phism, and that, for each « € G, the homomorphism A\, , : 0 =+ G
is such that A, 4(r) = rx for all r € a. Now there is an R-
homomorphism ne(G) : G — Dg(G) which is such that, for each
9 € G, 18(G)(g) = [Ap,g] (for any b € ®).
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Let & = (P;)ien be a family of systems of ideals of R. The
generalized Hughes complex for M with respect to S has the form

h~1 hO hl .hi .
0-M™ KOBLK'SH K2 o . 5 KPS K 5.

and is denoted by H(S, M). This complex, which is a general-
ization of one constructed by K.R. Hughes in [3], is described as
follows. Write K™2 = 0,K~! = M, and use h~2: K~2 — K~!
to denote the zero homomorphism. Then, for all n € Ny, K" =
Dg,,,(Cokerh™=2), while h*~! : K®~! — K™ is the composition
of the natural epimorphism n,.; : K®~! — Coker A"~ 2 and the
homomorphism

Ne,,.(Coker h"~2) : Coker h"~? — Dg,,,(Coker h"~2%) = K™,

1.3 NOTATION.

Throughout this paper, U = (U, )nen will denote a chain of
triangular subsets on R and § = (®,)nen will denote a family of
systems of ideals of R such that, for each n € N, the set

o(U,) = {Z Ru;j: (uy, - ,uy) € Uy}
=1

is a subset of ®,,. Note that, by [8, 2.5], ®(U,) is a system of
ideals of R. We shall also maintain the notations of 1.1 and 1.2
for C(U, M) and H(S, M) respectivly without further command.

2. Divisibility in generalized Hughes complexes

In this section, we introduce the concept of divisibility in #(S, M)
which is, in certain situation, similar to the concept of repeated
division in Cousin complexes introduced by R.Y. Sharp in [6, §
2]. We shall also establish some properties of this concept.

LEMMA 2.1. Let n € Ng, m € M and u = (uy, ,Uny1) €
Un+1. Assume that there exist H € Dy, 1 (R), w = (wy, -+, Wny1)
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€Upyyand f; € HomR(Z Ruw;, Coker h*~?%) foralli=0,---,n

J-.—

such
that
(a) HuT =w” and
i+1 alhlm 1=0
) fi() ajw;) = :
' ?':j: 7 Git1hiz1mio1{[fi-1]) 1#0
for any choices of ay, -- ,an+1 € R. Then

(i) u;[fi] = O for all integers 1,j with 1 < j < i< n and
(i) mi(uip1[fi]) =0 for alli=0,1,-

Proof. It follows from (b) that uy fo = ARw, .. Hence the claim
is true in the case when n = 0.

Now suppose, inductively, that n € N and the result has been
proved for all non-negative integers less than n. It immediately
follows from the inductive hypothesis that u;{f;] = 0 for all 4,3
with 1 < j <1< n—1 and that m;(ui41[fi]) =0 forall0 < i <
n—1. In order to complete the inductive step, it is enough to show
that u;{fn] = 0 for j < n and mp(un41(fn]) =0. Let 1 <k <n
and aj, - ,an41 € R. Then, by (b) and the inductive hypothesis,

n-1

ukfn(z ajwj) = an+1hn+17rn——1(uk[fn—l]) =0.
J=1

Also, it follows from inductive hypothesis and (a), (b) that,

n+1 n-+1
un+1fn E a,]w, = Op4+1Wn4+1MTn-1 (fn 1 = am(_s_ a’]wj
g=1
n+1

where a = 3 Rwj, £ = mn_1([fn-1]). Therefore unii[fn] =
=1

[Un+1fn] = [Maz] and consequently n,(unt1[fn]) = 0. The induc-
tive step is therefore complete.
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LEMMA 2.2. Let the situation and notation be as in 2.1. More-
over, assume that there exist H' € Dy 1 (R),w' = (wi, - ,w} )
i+1 ,
€ Unt1 and f] € Homg() Rwj, Coker h*~?)foralli=0,1,---,n

j=1

such that

(') H'uT =w'T and

i+1 athim =0
®) fi(Q_ajwi) = { .
' ; ’ @irihipimici([fica]) 1#0
foralla,,--- ,an+1 € R.
Then [f;] = [f!], inK?®, for alli = 0,1, ,n.

Proof. In the case when n = 0 the proof is a straightforward
adaptation of following. So suppose, inductively, that n € N and
the result has been proved for n — 1. There are L, L' € D, ;(R)
and z = (21, ", Zn41) € Unyy such that LwT =27 = L'w'T. Tt
therefore follows that f,(2;) =0for j=1,---,n and

fn(Zh11) = Zng1fn(2n41) = ZnsilnsrAnga (Tao1([fr-1)))-
Also, since 27 = L'H'uT, it follows from 2.1 that
fn(zyzz+1) = l;;+1h:1+1ln+1hn+1‘un+1('"'n—l([fn—l]))-

Similarly, we can show that f(z;) =0forallj=1,---,n and
Fa(Zh1) = Inpibnsaln g b1 tngd (a1 ([fro1))-

L
So, by inductive hypothesis, the restriction of f,, and f}, to (}_ Rz;
=1
+Rz2 ) are equal and consequently [f,] = [f}] inK™.

Now we can define the concept of divisibility in the complex
H(S,M).
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DIFINITION 2.3. Letn € Ng,m € M and u = (uy, - ,Un41) €
Un+1. We say that m is divisible by u or that u divides m with
respect to S (briefly u divides m), if there exist H € D1 (R), w =

141 o
(wy,+* ,Wny1) € Upyy and f; € Hompg( Y, Rw;, Coker h*~?) for
j=1

all2=20,1, - ,n such that

(@) HuT =w” and
) (gf alh,lm it =190
) fi()_ajw;) = .
= 7 aiyrhipimio1((fia]) 1#0

for any choices of a1, -+ ,an41 € R.

Let the situation be as above. Then the class [f;] € K* is de-
noted by m-+(uy, -+ ,u;41) foralli = 0,1,--- ,n. Note that if m is
divisible by (u,- - ,upn41), then m is divisible by (uy, -, u;41)(0
< ¢ < n). In the rest of this paper, we interpret m <+ (uy1, -+, un)
as m whenever n = (0.

In the following theorem we provide a charactrization of divis-
ibility.

THEOREM 2.4. Letn € Np,m € M and u = (uy, -+ ,Up41) €
U,+1- Then the following statements are equivalent.

(i) u divides m.

(ii) (uy,- -+ ,uy) divides m and there are w = (wy, - ,Wn4+1) €

n+1
Un+1, H € Dpyi(R) and f, € Homg( Y, Rwj, Coker h»~?) such
i=1
that HuT = wT and
n--1

Jj=1

(iii) (uy, - -, un) divides m and there arew = (wy, -+ ,Wy41) €
Uni1, H € D1 (R) such that Hu? = w® and

(Z Rw; :p Wny1) C annp(Tp_1(hns1(m(uy, -, us)))). (%)
i=1
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Moreover, if (ii) is satisfied, then m + u = [ f,].

Proof. The implications (i)==(ii) and (ii)==>(iii) are clear.
(iii) = (i) It follows from (*) that there is an R-homomorphism
n+1

fn: 3 Rw; — Coker h"~? which is such that fora;,--- ,a, € R
Jj=1
n+1
fn(z ajW;) = ptihnp1mno1(m = (uy, -, un)).
j=1

Also, by 2.3, there exist v = (vy, -+ ,v,) € Upn, K € Dy(R) and

i+1 ) )

fi € Homg(Y" Ruvj;, Coker h*~2) such that K(u1, - ,un)? =7
J=1

and

i+1
fi(z ajv;) = Giprkivimi—1([fi-1])

j=1

for all 4 = 0,1,---,n — 1 and ay,---,a, € R. Next, there
are P,Q € D,41(R) and z = (21, - ,2n+1) € Upn41 such that
P(v,)T = 2T = QuT. Let L = (l;;) € Dp41(R) be such that
L* = P*K, and ln415 = hyyy, for each 1 < j < n+ 1, where
(hi;) = QH. Then LuT = 2T and so, since [f;] = {fil,g,:, . ] and
i=1

fil satisfy the condition (b) of 2.3 for all i = 0,--- ,n, u

i1

2. Rz;
Jj=1x
divides m.

The final claim follows from the same arguments used in the

proof of the implication (iii)==>(i).

Now, we prove some properties of divisibility which will be used
later.

LEMMA 2.5. Let n € Ng,m € M and u = (uy, - ,Up41) €
Uyn+1. Assume that u divides m. Then

(i) For each a € R, u divides am and a(m +u) = am + u

(ii) uj(m + (u1,--- ,u;41)) = 0 for all integers 4, j with 1 < j <
i <mnand m(uip1(m+ (v, - uig1))) =0foralli=0,1,--- ,n.
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(iii) If m" € M and v = (u},--- ,uj,,,) € Uny are such
that v’ divides m', then, for all H H' € D,1(R) and each
w= (Wi, ,Wny1) € Upy1 with HuT = wT = H'WT, w divides
|Hlm + |H'|m' and

(m+u)+(m +)=(Hlm+ |H'|m') +w.

In particular m +u = |H|m + w.

Proof. Part (i) is a straightforward calculation, while part (ii)
is an immidiate consequence of 2.1 and 2.3.

(iii) In the case when n = 0 the proof is a straightforward adap-
tation of the following. So suppose, inductively, that n € N and
the claim has been proved for n — 1. By 2.4, there exist K, K' €

Dpyi(R), v = (v1, ,Ung1), v = (v}, - 0,1 ) € Uny1, fn €
n-1 b4 1
Hompg( Y Rv;, Coker h™~2) andf’ € HomR(12:1 Rvj;, Coker h"~?)
j=1 7=
such that KuT = o7, K'u'" =¢'" and that, for alla,, - - =
R,
n+1
fn(zajvj) = an+1kn+17rn—~1("n -+ (ul, T aun))7
i=1
n+1
f:*(zaa‘”;‘) = Gnt1kp 1 Tao1 (M + 0y, uy)).
i=1
Next, since v,w,v’ € Up41, there are P, P, Q,Q" € D, (R)
and z = (21, ,2n41), 2 = (2}, -+, 2h41) € Un41 such that

PuwT = 2T = QuT and PwT = 2" = Qv'". Also there exist
L’ L € Dn+1(R) and Y= (ylv T yn+1) € Un+1 such that LZT =
yT = L'2"". Thus yT = LQuT, and so

Fr(¥241) = Uns1fa(¥ns1) = Ynstlnd1@ntrkns1mn—r(m = (w1, ,un)).
Therefore, since y7 = LPHuT, we have, in view of (ii),

Fa(¥i 1) = lns1Prtrhniiln1Gn g1 bn g1 tn g1 o1 (M £ (-, un)).

n+1
Now, it follows from (ii) and the facts that v,y = Y kni1ju;j,
i=1
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n-1
Zn41 & Z In+15Y5 and yn41 = 2 lnt1525 that
Jj=1 j=1
Fayii) = s 1Pnt1Pnsilne1@n1Uns1Tno1(m + (ug, -, un))
= lnt1Ppt1Pnstlnt1Znt1Tno1(m + (41, Un))
= ln+1pn+1hn+1yn+1ﬂ'n~l(m -+ (ul’ t aun))'

Consequently, by (i) and inductive hypothesis,

fn (yn+l) ln+1pn+1yn+17rn——1(|H‘m (wr,- - , Wp))-
n+1
Hence, since ynp4+1= Z U 1,25 and 2= Z Ph41,Wj, We have,
j=1

in view of (ii),
i) = It 1Pnt1lns1Pap1Wns1 a1 (JHm + (wy, - - , Wn)).
Similarly, we have

fr,;(yyzz-f-l) = l:,+1p;,+1ln+1pn+1wn+11r,,_1(}H'\m’ + (w0, Wn))-

) n
Hence if the restriction of f, and f to (3 Ry; + Ryj.,) are
i=1

denoted by g, and g/, respectively, then, by inductive hypothesis,

(9n + 9n) (Was1)

= lp1Pnt 1l 1Phs1Wnr1 -1 ([Hlm + |H'fm' = (w1, ,wn))
= s 1Pat1Yns1Tat ((Him + |H'|m' + (w1, -+, wn))-
Now, let D = diag (1 .1, Uns1) € Dnyi(R). Then DLP €

Dyi1(R) and DLPwT (yl, ©  Un Y2 1)T. Therefore, since the

restriction of (gn + g5,) to Z Ry; is zero, the inductive step is
g=1
complete by 2.4.
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EXAMPLE 2.6. Let R be an N-ring ([2, p.115]) and let n €
No,m€ M and u = (u1, - ,Un41) € Uny1. We show that u di-
vides m. Suppose, inductively, that each element of M is divisible
by (u1,--- ,un). It follows from [2, 2. 3] that there exists t € N
such that

n

i
(Z Ruj :pupyq) = (Z Ru; :r ubth).

=1 j=1

n n
Hence, if a € (Zl Ru; :p utty), then auf,,; = __S_:l r;ju; for some
1= j=
r1, -+, Tn € R. So, by 2.5 and inductive hypothesis,

n

awn_l(ufmﬂm = (u1, - ,un)) = Z rimn-1(ujm <+ (u1,- - ,un)) = 0.
i=1

Therefore (Z Ru; :p uf;'_"_ll) C anng(mn-1(ul ym+(ur, - ,Up)))-
=
Also, if D = diag (1,--,1,ut ;) € Dni1(R), then Dul =

(uy,- - ,ut})T. Hence, in view of 2.4, the claim follows.

THEOREM 2.7. For all i € Ny, let
@:_:;I(M) = {m~:»(u1,‘ .. ,'U,H_l) tme M, (ul, st ,u,-_H) c UH'I}'

Then, for all i € No, ®'T* (M) is a submodule of K* and so, if
d*1 denotes the restriction of h* to ® ;7 (M) for each i > —2 (
interpret ®11(M) =0, ®}(M) = M), then
di+1(m - (ul? et ’U'H—l)) =m - (U‘l’ oy Uil 1)
and
0o MBS e (M) B a2(M) o &THM) B eI (M) -

is a subcomplex of H(S,M); we denote this subcomplex by
C(S,M).

Proof. Tt follows from 2.5 (i), (iii) that ®_ ;1 1(M) is a submod-
ule of K*.
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Leti € Ng, m € M and u = (uy,- - ,ui+1) € Uiy be such that

m+u € O j;l(M ). Then, by 2.5 (ii), there is (a well defined)
i+l ,

R-homomorphism fi1 : (3. Ru; + R) » Coker h*~! which is
ol

such that, for all ay,--- ,a,42 € R,
i+1
f,-+1(2 ajuj + Gig2) = @ipomi(m + u).
j=1

Let I, be the identity matrix of order ¢ + 2. Then I;;2(u,1)7 =
(u,1)T. Hence, in view of 2.4, (u,1) divides m and also m +
(u,1) = [fi+1]. Since, for each a € ®;,3, Ag x,(m=+u) 8 the restric-
tion of f;,; to a, we have

hi(m'}'u) = n‘f’i+2( Coker hi_z)("ri(m":'u)) = [)\a,m(m-%u)] = [fH-l]a

as required.

3. A unique morphism of complexes

In this section, we prove that there is exactly one morphism of
complexes

0= (Bi);z_z : 7’{(3, M) —— C(u, M)

over Idy, and we describe each 6 : K* — U '[' M explicity. We
also provide a necessary and sufficent condition for the complex
H(S, M) to be isomorphic to the complex C(U, M).

PROPOSITION 3.1. Assume that, for .each 1€ Nand b € 9,
there exists (vy,- -+ ,v;) € U; such that Y Rv; C b. Then, for all

i=1
n € Ny and 3 € K™, there exist m € M and u € U, such that

u divides m and B = m + u.

Proof. Let n € Ny and 3 € K™. Suppose, inductively, that the
claim has been proved for smaller values of n. There exist v =
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n

41
(v1, " »VUn+1) € Unt1 and f € Hompg( Y Rv;, Coker R"*~%) such
=1

k]
that 8 = [f]. It therefore follows from the inductive hypothesis
that, for all jJ = 1,---,n + 1, there exists
mj+(wyj, - » Wnj) € K™ such that f(v;) = mp_1(my+(wy, -,

Wnj))- So, by 2.5 (iii), there is t € Uy, such that Imf C {mp-1(m+
t) : m € M}. Next, there exist H,K € Dny1(R) and w =
(W), - ,why,) € Uny1 such that HoT = w" = K@¢1)T. It
therefore follows from 2.5 (iii) that

Imf C {mp-1(m + (wh, - ,wy)):mE M}.

Hence, there is mp € M such that flw, ) = Tp—1(mo+(wy, ",
w')) and, by 2.5 (ii), f(w;?) = 0(1 < j < n). Also, if we let
D = diag (w), -+ ,wp,1). Then Duw’ = (‘w’f,-w ,wf,w;H)T.
Hence, in view of 2.4, w’ divides mg and

B =]l

= Mo <+ 'L, !
{: Rw'? +Rw’ +1] - (wl’ vwn+1)‘
4 3 n
=1

THEOREM 3.2. Let ~! = Idy. Let the situation be as in
3.1. Then, for all n € No, there is an R-homomorphism 6" :

“nrY(M) — U, P M which is such that, for each m=(u1,- -+ »
Unt1) € ;:fl(M)a

m

(ula"' ,un+1).

0™ (m + (uy,- - JUng1)) =

Moreover, if n € No, and ¥n : &N (M) — ,',‘fflM is an
R-homomor- phism such that the diagram
—-n d® —n-1 :
;" (M) — 41 (M)

o | |-

U-"M — UM
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commutes, then 1, = 8. Consequently, the family © = (6*);>_,
is a unique morphism of complexes over Idys from C(S, M) to
Cu,M).

Proof. To prove the first part of claim, in view of 2.5, it is
enough to show that, for all n € Ny, if 0! is a well defined map
with the required property, then so is ™.

Let n € Ny and let m + (uy, - ,%n+1) = 0. Then, by 2.4 and
the fact that ®(U,+1) is a cofinal subset of ®,, ., there exist w =

n+1
(wl’ e ,wn+1) € U’n+1aH € D11+1(R) and f € HOmR( ] Rw])

J
n+1

Coker h"~2) such that Hu' = wT and f( Y ajw;) =
=1

Antihnp1mno1(m = (4, - ,u,)) = 0 for all ay,--- ,ans1 € R.
Therefore, by 2.5,

0= f(wﬂ+1) = anl(IH]m - (’U)l, T 7wﬂ))‘

That is, |H|m < (wy,-- - ,wy,) € Im h*~2. It therefore follows from
3.1 and 2.7 that there exist m’ € M and v = (v1, - ,Up-1) €
U,,—1 such that

|H|m + (w1, ,wy) =m' + (v1,-+ ,v0_1,1).

Next, there are K,L € D,(R) and v’ = (w}, - - ,w!,) € U, such
that

K(wy, -, w,)T = w" = L(v,1)T. So, by 2.5 (iii) and the well
defindness of 71,

_ '
0= 9n~1((‘K”H1m__‘ IL‘m,)“}‘(w,lv L ’w;n)) — IKHHIm ILIm ,
(wi, . e ’«u);l
in U;™M. Consequently in U7 "M
|H|m _ |K||H|m |L|m’ B m'

(wla"' Jujn) - (w’la 7w"n,) ("Ully"' rw:;) B (‘Ulv'“ ,'Un...l,l).
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Therefore wyi1|Him/w = m'/(v,1,1) = 0, in U, 7M. Hence,
by [10, 2.1}, 0 = |H|m/w = m/u. Now, the claim of this part
follows from 2.5 (iii).

To prove the second part, let n € Ng, m +u € &, 77 (M)
and ¥, (m + u) = m’'/v for some m' € M and v € Up4y. Then
there exist H, K € D, 11(R) and w= (w1, -+ ,Wn4+1) € Un41 such
thatHuT =w”T = KvT.Now,by 2.5 (iii) and 2.7

wn+1'¢n(‘H|7n +w) = wn(lHIm +(wy, -+ ,wp, 1)
= Ypod™ (|H|m + (wl’ S, W)
= e N (|H|m + (wy, - ,wy))

= lHlm/(‘U)l, rcy Wn, 1) = wn-{-llH‘m/’U).
On the other hand, we have
wn+1"/)n(|H‘m +Tw) = wn+1m’/v = wn+1.Kim,/w'

Hence wpp|Him/w = wnpp|K|m'/w. Tt therefore follows, in
view of [10, 2.1], that |K|m'/w = |H|m/w, in U777 'M. Hence,
Pn(m +u) = 6™ (m+u); and consequently the proof of the second
part is complete.

Now, it is immidiate from 2.7 that © is a unique morphism of
complexes.
In the following, we prove one of the main theorems of this

paper.
THEOREM 3.3. Assume that, for :all i € Nand b € ®;, there

2
exists (v1,--+,v;) € U; such that Y, Rv; C b. Then there is
j=1
a unique morphism of complexes © = (6%);>_5 : H(S, M) —
C(U, M) over Idps. Furthermore, if ¢ € Ny, then the following
statements are equivalent.

(i) 6=',6°,--- 0 are epimorphisms.
(ii) 8=1,0°, .- ,6" are isomorphisms.
(iii) For n = 0,1,--- 4, each element of U,y divides each

element of M.
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Proof. The existance and uniqueness of the morphism © can
be deduced from 3.1 and 3.2. So we need to show that the above
conditions are equivalent.

(i) = (ii) we prove, inductively, that 6~1,6% .-- 6 are iso-
morphisms. Let 0 < n < ¢ and suppose that §71,6% ... "~ are
isomorphisms. Since Ds_,,( Coker h"~2) = Dg(y, . ,)( Coker h"~2),
by the same arguments in the proof of [7, 2.5], we may define an
R-monomorphism 1, : K™ — U0 1M such that the diagram

1 hn«l
K*"¢ —— K"

| 2

n

e
- -n—1
U;"M —— UM

commutes. It therefore follows from 3.1 and 3.2 that %, = "
hence 6™ is an isomorphism.

(ii) == (iii) Let 0 < n < ¢ and suppose, inductively, that
each element of U, divides each element of M. Let x € M and
u = (uy, - ,Unt1) € Uny1. Since z/u € ,:f{lM and 6" is an
epimorphism, by 3.1, there exist m € M and v = (v1, -+ ,Un+1) €
Upn41 such that v divides m and z/u = m/v, in U7 'M. By
2.4, there are P € D, 1(R),w = (w1, - ,Wnt1) € Upnyy and

n+1
fn € Hompg( Y. Rw;, Coker h"~2) such that PvT = w” and
i=1
n+1
fn(z 6;jw;) = Gnt1Pn+1n—1(m + (v1, -+ ,vn)) for a1,- -+ ,an41 € R.

j=1

Next, since m/v = |Plm/w, we have z/u = |Plm/w. Hence,
there are H,Q € D,4+1(R) and z = (21, -, 2n+1) € Un41 such

that Hu? = 27 = QuwT and |H|z —~ |QP|m € ¥ z; M. Therefor,
J=1
by inductive hypothesis and 2.5,

Tn-1{([H|z =+ (21, ,2n)) = Tna (|QPIm + (21, -+, 2n));
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consequently
n+1
fn(z bjzj) = n+1‘Jn+1pn+17"n-l(m - (Ula T avn))
j=1
= bn417n—1(|QPIm + (21, - -, 24)) ( by 2.5 (i) and (iii))
= bn+17rn-1(’Him -+ (21, e 3zn))
= bpyrhns1Tao1(z + (ug,- -+, un))
for all by, -+ ,bny1 € R. Therefore, since Hu” = 27, we have, by

inductive hypothesis and 2.4, that u divides z, as required.
(iii) == (i) This is clear.

COROLLARY 3.4. Let the situation be as in 3.3. Then the
unique morphism of complexes H(S,R) — C(U,R) over Idr
is an isomorphism if and only if each element of Up41(n € Np)
divides the identity element of R.

4. Isomorphism of cbmplexes

In this section, we shall use the results of §3 to obtain isomor-
phism between the complexes H(S, M) and C(U, M) in certain
cases. Also, we shall provide a necessary and sufficient condi-
tion for the exactness of the certain generalized Hughes complex
H(S, M).

In the following, we shall use the concept of a d-sequence. The
theory of d-sequences was introduced by Huneke in [4]. Let n € N
and z,---,z, € R. Then the sequence z,,---,z, is called a
d-sequence on M if, foralli=0,--- ,n—~1landall k > 1+ 1,

i i
(Z Rzj)M :p ziq2k = (z Rz ;)M :p zi.
7=1 j=1

(this is actually a slight weakening of Huneke’s definition).

THEOREM 4.1. Let © be the unique morphism of complexes
of 3.3. Let 1 € Ng and suppose that, for all j =0,1,---,1 and all
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(1, ,uj41) € Uj41, there exist an integer k with0 < k < j+1
such that uy,--- ,u; form a d-sequence on M and ug4; = -+ =
uj+1 = lr. Then 67! 6° .. 6" are isomorphisms: that is, if

z €M and u € Uj;1(0 < j < i) then u divides z (see 3.3).

Proof. We prove the claim by induction on j. Suppose that 0 <
J <1 and the claim has been proved for smaller values of j. Let

z € M and u = (uy, -+ ,uj41) € Uj41. Then there exists 0 < k <
j+1 such that uy,--- ,u; is a d-sequence on M and ugy, = -+ =
uj+1 = 1r. If k < 7+ 1, then, in view of the inductive hypothesis
and 2.7, the claim is clear. So we assume that u;,--- ,u;4; form
a d-sequence on M. Let D = diag (1,---,1,uj4+1) € Dj41(R).
Then Du” = (uy,---,u;,u?, ;)T and so, in view of 2.4, the in-

ductive step will be complete if we show that
J
(Z Ru; :g ufyy) C annp(mj—1(ujram + (ur, -+, u5))).
=1
i
To achieve this, let o € () Ruy :g u?,,). Then
=1

J J
am € (Y Ru)M =y 1) = (Q_ Ru)M i1 ujp1)-

=1 =1

It therefore follows from inductive hypothesis and 2.5 (ii) that
mi—1(ujpr0m + (uy, - - ,‘Uj)) = 0.

Hence a € anng(m;_1(ujs1m + (u1, -+ ,u;))) and the proof is
complete.

THEOREM 4.2. Let the situation and notation be as in 3.3.
If one of the complexes C(U, M) or H(S, M) is exact, then the
unique morphism of complexes © is an isomorphism.

In particular, H(S, M) is exact if and only if each element of
U; is a poor M-sequence.

Proof. The claim follows from [5, 3.1] and 4.1 whenever C(U, M)
is exact. Therefore we may assume that H(S, M) is exact. In view
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of 4.1 and the fact that each poor M-sequence is a d-sequence, it

is enough to show that each of element of U,,; is a poor M-

sequence for all n € Ny. We prove this by induction on n. Sup-

pose, inductively, that U; consistes of poor M-sequences for all

1<i<n Letu=(u - ,uns1) € Upnyr and let m € M be
n T

such that u,y1m € (3 Ruj;)M. Then unpim = ) u;jm; for
J=1 Jj=1
some my,--- ,my, € M. It follows from inductive hypothesis and

4.1 that (uy,-- -, u,) divides the elements m, m,,--- ,m,. Hence,
by 2.7 and 2.5, we have

dn(m -+ ('U.l, T 7un)) = Up11 ('u"la Tt aun-H)
and
7%
Tn—1(Unp1m+(Uuy, -+ Uup)) = Z’rrn~1(ujmj—§-(u1, s, y)) = 0.
i=1

Consequently, in view of difinition of divisibility, d™(m + (uy,- -,
un)) = 0, and so m = (uy, -+ ,u,) € Ker d* = Imd™~!. Therefore
there exist m' € M and (vy,-- ,Vp-1) € U,.1 such that m +
(uy, -+ ,up) =m' + (v1, -+ ,vn-1,1). Hence, by 3.2,

m m'

(Ul,"' ,un) - (Ulv"' avn~1al>,

in U;"M. Now, by arguments entirely similar to those used in
14
the proof of [5, 3.1], we can show that m € () Ru;)M, and so
i=1
the proof is complete.

In the following, we obtain a stronger form of [8, 3.5] and {7,
2.5] by using 3.3 and 2.6.

THEOREM 4.3. Let the situation and notation be as in 3.3. If
R is an N-ring ( and so in particular, if R is Noetherian), then
the unique morphism of complexes © is an isomorphism.
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REMARK 4.4. An example of a commutative ring R and a
chain of triangular subsets on R, are given in [7,§ 3] which shows
that the morphism of complexes © of [7, 2.5] is not always an
isomorphism. But it is not shown that these complexes are not
isomorphic. Now, by using the uniqueness property of 3.3, it is
clear that the two complexes which are considered in that example
are not isomorphic over Idy,.

Note that one may use 3.4 and 2.4 to provide a shorter proof
of (7, § 3].
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