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We first obtain the departure process of a D-BMAP/Geo/1/K queue. The departure process is then exactly
characterized by a k-state MMBP in order to capture the burstiness and correlation of the departure process.
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I. Introduction

In recent years there has been a lot of
interest in the development of high-speed
communication networks. The most promising
design for high-speed networks is the
Asynchronous Transfer Mode(ATM). The need
for performance evaluation of ATM networks
has given rise to a widespread interest for the
analysis of discrete-time queueing systems.
Discrete-time single server queues with or
without finite capacity have been extensively
analyzed. For a review of relevant results see
Pujolle and Perros”. However, little has been
done for the analysis of networks of
discrete-time finite capacity queues. A network

of discrete-time finite capacity queues can be
used to model the queueing within an ATM
switch, or the queueing within a network of
A'TM switches. The external arrival process to
the network is assumed to be bursty and
correlated. Markov Modulated Poisson
Processes(MMPP)*®, and Markov Modulated
Bernoulli Processes(MMBP) are used to model
a bursty arrival stream since they capture the
randomly varying arrival rate. The MMPP and
MMBP capture the notion of burstiness and
correlation of successive interarrival times. In
this paper, we assume that the arrival process
to the queue is a Discrete-time Batch
Markovian Arrival Process (D-BMAP) which
belongs to a «class of versatile point
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processes’®. A D-BMAP is the proposed
model for a single variable bit rate source.
Also, it can be used to model the superposition
of several such sources®. The MMBP or IBP
is a special case of the D-BMAP, with all
arrival having a batch of size 1.

In this paper, we consider discrete-time
finite capacity queues with cell loss. The
service time at the queue is assumed to be
geometrically distributed. The choice of the
geometric distribution was motivated by ATM
networks”. In general, a service time
represents a transmission time. In an ATM
networks the size of a cell is constant, and
therefore, the transmission time is constant as
well. However, in some ATM switch
architectures a cell may be re-transmitted
several times due to possible collisions with
other cells. In this case, the total transmission
time is typically modeled by a geometric
distribution.

In general, discrete-time queueing networks
as they arise in ATM do not lend themselves
to an exact analysis. They can be analyzed,
however, approximately using the notion of
decomposition. That is, the network is
decomposed into individual queues, and each
queue is then analyzed separately. The most
important aspect of such a decomposition is
the characterization of the arrival process to
an intermediate queue. In continuous-time
queueing networks, typically such as the
departure process is characterized
approximately by a phased-type distribution, or
by a general distribution defined by the mean
and squared coefficient of variation. Although
there has been some work regarding the
departure processs'm, most of this work bears
some limitations which serious undermine their
applicability on network-wide traffic analysis.
Most of these studies only provide resuits on
the stationary distribution of the interdeparture
time. Although this is a very important piece
of information, it is by no means sufficient for
characterizing the non-renewal departure

process: the lengths of successive

interdeparture times are highly correlated and
such correlation will have significant impact on
downstream queueing performance. As a result,
details about the dynamic behaviour of the
departing  stream, eg., burstiness and
correlation, have to be studied. In this paper,
the departure process of the D-BMAP/Geo/1/K
queue has been studied.

Blondia and Casals® showed that the output
process of a D-BMAP/G/I/K queue is a
D-BMAP. Park and Perros™ derived the
generating function of the interdeparture time
distribution and correlation of the departure
process of an MMBP/Geo/1/K queue. They
also obtained an approximation model for
characterizing the departure process by an
MMBP in order to capture the correlation and
burstiness of the departure process of the
queue.

This paper is organized as follows. In
section I, we give a brief description of the
D-BMAP. The generating function of the
interdeparture time of a D-BMAP/Geo/1/K
queue and the correlation coefficients for the
departure process are obtained in section III. In
section IV, we present a fitting model for
characterizing exactly the departure process as
a k-MMBP.

II. The Discrete-time Batch Markov
Arrival Process

1. The Generating Function of the Interarrival
Time of the D-BMAP

A D-BMAP can be represented by a
2-dimensional discrete-time Markov process
{(J(k), N(k)) : k=0} on the state space {(i, /)
: 1<i<m, j=0}, where { indicates the state
of the arrival process, and j indicates the
number of arrivals. The transition matrix T of
the counting process has the following
structure:
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PO Pl P2 P3 A
T = P, Py Py -
PO Pl

where P, k=0, are mXm matrices. Let
P= kZ_O P, be the transition matrix of the

underlying Markov process. If J(k) represents
a phase variable and N(k) a counting variable
then the above Markov process defines a batch
arrival process where transitions from a state
(i, j) to state (1, j+n), corresponding to batch
arrivals of size n.

Consider a discrete-time Markov chain with
transition probability matrix P. Assume the
underlying Markov process is in some state i,
1<i<m at time k. At the next time instant
k+1, the process may transit to another state
or it may stay in the same state, and a batch

arrival may or may not occur. Let p, ;; n=

0, 1=<i, j<m, be the probability that there is a
transition to state j from state { with a batch
arrival of size n. Then, with probability
bw.ip, n=1, 1<i, jSm, a transition to state
J will take place without an arrival, and with
probability p(,. ;5. n=1, 1<i, j<m, there will

be a transition to state j with a batch arrival
of size n. We have

m o0 m
2000y T 2 Dby = 1.
ji=1 n=175=1

Using this notation, it is clear now that
PO = [p((),i,j)] mxm and Pk

=[pwipl mxm , govern transitions that

matrices

correspond to no arrival and arrival of batch of
size k where k%0, respectively. A D-MAP is
a special case of the D-BMAP, with all
arrivals having a batch of size 1.

Through this paper, we consider an arrival
process to the queue which is a D-BMAP
characterized by the transition probability

matrix P of the Markov process, A, mXm
diagonal matrix with elements «;,**,a,, and
B, defined by

[ P11 Dim

P = ,

pml pmm

K3 0

A = , and
0 an
[ b1 byp

B =
[ bm by -

where p; 1<i, j<m is the transition
probability that the process changes from state

m

i to state J, lel-,:l, @; is the probability
=

that a batch arrival occurs when the D-BMAP

shifts to state i, and by is the probability that
the arriving batch size is equal to k, k=1,

Z_]Ib,-,,=1‘ The D-BMAP satisfies following

equations:  poip = Pill- @), Puip = Di @ b,

and p,,=§0p(,,,z-,,-) for n>1, 1<i, j<m This

process can be also referred to as a Markov
Modulated Batch Bernoulli Process (MMBBP).
In general, a D-BMAP becomes an MMBP if
the following relation are satisfied:

For 14, j<m,

bﬂ :1

pi =Dbw.inptba.ip

p; (1—a) =bq.ip (1
i @ =ba.iy 2)

A D-BMAP has been proposed as a model
from single variable bit rate source and its
superpositionﬁ). Therefore, we assume that the
batch size of a batch is bounded. Let N be the
maximum batch size. Let T be the interarrival
time between two successive batch arrivals.
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Also let =[x .. 7. T be the stationary

hand -
probability vector satisfying a= z P, where
m;, 1=<i<m, is the probability that the

process is in state i. The generating function
of batch interarrival time 7(2) is

T(z) = p, T(2)
2 p,(I—zM)'P A

I

where
- _  zA
Pa = 23"
T(z) = 2(I-zM) 'P 1,
M = P(I-A),
A=la..a,l"

The average batch arrival rate p, the

average cell arrival rate p,, and the squared
coefficient of variation of the interarrival time
between two successive arrival of batch, C%

are as follows:

—_r > N
py =mxd  p.=20i xAb; and
2)
[T (D]
where T));'z[bli,'“»bmi] ’ and
T(”)(l)zm
afz” z=1

2. The Autocorrelation of the D-BMAP

In this section, we obtain the autocorrelation
of the interarrival time of batches, and the
autocorrelation of the number of arrivals per

slot. Let £, be the time interval between the
(n-1)st and nth arrival of a batch. Also, let

t;, 1<i, j<m be the time interval to the

moment that the D-BMAP is in state j and
nth arrival occurs given that the D-BMAP is

in state i, and ', 1<i<m be the time

interval to the nth arrival given that the
D-BMAP is in state i. Define

Ay(2) A2
A(z) = [ and
Aml(z) ‘Amm(z)
— A1(2)
A(z) = [ : ]
An(2)

where A (z) and A,(z) are z-transforms of
t; and 7, respectively. From the definition of
Az) and A 2) for 1<4,j<m, we have
following equations:

A(z) = zPA+zMA(2) and
A(z) = T(2).

Therefore, we can obtain

A(z) = z2(1—-zM) 'PA and
A(z) = 2(1-zM) 'P A (3)

Using equation (3), we have

Gz, 2) = E{2"2,""}
= ;a A(Zl) Tk_l _A>(Zz)
p, 21(I=z,M)"'PA
T '2(1—-2,M)'PI (4

where T=[I-M] 'P4
By differentiating equation (4) with respect to
2z, and z,, we have

E{tytoi = Da(I-M)'PAT*!
(I-M)?PA.

The autocorrelation coefficient of the
interarrival time of batches of a D-BMAP for

lag A, ¢,(k), is given by
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E{tntyent —E*{t,)

¢'b(k) = Var{ tn} (5)

Let X, be the random variable representing the
number of arrivals at nth slot, where X, = 0,
1,---, N. Then, we have

E{X,}

Il
D
°

2 N e Pad
E(XY) = 2 # A b,

I

N d brad
E(X,X,4} = 2.ij nAB;P*A b,

t,7=

E{X%}-EY X,

I

Var{ X ,}

where B; is a diagonal matrix with elements
bli"“’bmz’~
Of interest is the autocorrelation coefficient

of the number of arrival per slot of a
D-BMAP for lag %, ¢.(k), given by

E{XanH-k) _Ez{Xn} .

¢c(k) = Var{X,,} (6)

III. The Departure Process of an
D-BMAP/Geo/1/K Queue

We consider a D-BMAP/Geo/1/K queue,
where the service time is defined over a
slotted time axis. A service starts at the
beginning of a service slot, and service
completion 1s assumed to take place just
before the end of the service slot. The arrival
process is also defined over a slotted time axis
with the same slot size, and it is assumed to
be a D-BMAP. The parameters of the armval
process are: pg, af, and bfj, where pj§ is
the (i,/)th element of the transition probability
matrix P, ef is the (i)th element of the
diagonal matrix A, and bf} is the (i)th

element of the matrix B. We define the state

of the queue by the variable (s,n). Variable s
represents the state of the arrival process at
the end of a slot and it takes the values: i, 1
<i<m, if the arrival process is in the state i.
Variable n indicates the number of cells in the
system at the end of a slot. We have n=0,1,
-+ K, where K is the capacity of the system
including the cell in service. Let Py be the
transition probability matrix of the queue.
Define Pu¢ and Pyos as follows:

00 0 0 0
M M; My M; M,
M M, M, M,

M M,; M,
M M,
P =(1-9 -
M, M M M3 0
M M, M, M; 0
M M, M, 0
M PA 0
P 0
and

MM, M, M; M,
Mo M0 Myo Mjyo

Mo M0 My
Mo Mo
Mo
Poa =
M0 Myo Mjs Mo
Mo M0 Mo Mo
Mo M0 Mo
Mo PAo
Po
where

M; = PAB, B;= 2 B, and

M,‘ =PA ﬁ,‘.

We can see that the transition probability
matrix, Ps can be decomposed into two
matrices, Pu¢ and Puos, Where Pug, Puoe is a
matrix that contains transitions with a
departure respectively without a departure.
Therefore, P4 = Puws + Puwow. We compute the
generating  function of the probability
distribution of the interdeparture time, and then
we obtain the autocorrelation of the
interdeparture time and the autocorrelation of
the number departure per slot.
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1. The Generating Function of the Interde-
parture Time Distribution

Let ¢, be the time interval between the

(n-Dst and the nth departure. Also, let £, 1

<i, j<L where L=m(K+1), be the time
interval to the moment that the state of the
queue is j and the nth departure occurs given
the queue is in state i, and £/, 1<i<L, be the
time interval to the nth departure given that
the queue is in state i. Define

Dl.l(z) DI,L(Z)

D(z) = ] and
D; (2) Dy 1(2)

_ D1(Z)

D(z) = [ : }
DL(Z)

where D;(z) and D,z) are the z-transforms
of #; and ¢/, respectively. Also, let p*(sn)

be the probability that immediately after a
departure the system is in state (s,n). From
the definition of D;(z) and D(z), we have

following equations:

D(z) = z2(I1-2zP ) 'P, and
D(2) 2(I1=2P 40) ‘P €.

Then, the generating function of the
interdeparture time distribution IXz)can be
obtained from as follows:

Xz) = p D2
= z2p(I-z P ) ' Py e

where

[p7(1,0),-,0%(m,0),p"
(L,D,p" 2,1, 0" (m,K)]
XPwd

X/‘d.

)
l

From the generating function, we can obtain
the moments of the time between successive
departures, the squared coefficient of variation of

the interdeparture time C%, and throughput 0.

2. The Autocorrelation of the Departure Process

In this section, we obtain the autocorrelation
of the interdeparture time, and the
autocorrelation of the number of departure per
slot. In order to obtain the autocorrelation of
the interdeparture time, we have

Gz 25)
— E{zinzéﬁﬁ}
= f;+ D(ZI)R'EAI 3(22)
D 2(1—2 Py P
Rk—IZQ( I &l Pwod) -1 Pwd _e>
@)
where R=(I1—P 40 'Poa
By differentiating equation (7) with respect to
z; and 2y and substituting 2;=1 and z,=1

into equation (7), we have

E{tntn+k} = —I-;Jr(l_ Pwod) _2P,,,d
R*(1-P,n) ‘P e.

The  autocorrelation  coefficient of  the
interdeparture time of an D-BMAP/Geo/1/K
queue for lag k, ¢ k), can now we obtained
using expression (5)

Let X, be the random variable representing
the number of departures in the nth slot,
where X, = 0, 1. We have

E(X,) =E{X})=p, and

E{X,Xuui} = XPuPY1 4,
where jd=[0.---,0,l~a,--'.l—a] T and
x is the steady-state probability vector

satisfying ;Pd= X. The  autocorrelation
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coefficient of the number departures of the

queue for lag £, ¢ %) can now be obtained

6)
from.

Let us consider the autocorrelation of the
interdeparture time of the queue. One of the
most interesting facts that we have observed
is that the autocorrelation coefficients of the
interdeparture time (correlogram) may fluctuate
quite a lot'®. We note that this behaviour is
barely seen in the departure process of an
MMBP/Geo/1/K queue. This oscillation seems
to be due to the variability of the number of
arrivals per slot within the same state of the
arrival process. Let us consider the case where

[0.98 0.01 0.01

P =10.01 0.98 0.01},
(0.01 0.01 0.98
0.9 0.0 0.0

A =10.0 0.5 0.0l, and
0.0 0.0 0.1
(0.8 0.1 0.1

By =10.2 0.6 0.2}.
10.1 0.1 0.8

When the arrival process is in state 3, the rate
of arrivals a3 is very low. Also, by is quite

large in relation to b3 and byp. When the

arrival process is in state 3, there may be
long interarrival periods and the queue may
empty out between successive batch arrivals.
In this case, the pattern of the interdeparture
times consists of one long interval followed by
small intervals. This pattern causes the
autocorrelation of the interdeparture time to
fluctuate.

IV. Characterization of the

Departure Process

In this section, we obtain a model for
characterizing the departure process by a
k-MMBP. This model exactly captures the
correlation and burstiness of the departure
process of the queue. It can be shown that the

output process of a D-BMAP/G/1/K queue is
a D-MAP” and the MMBP is a special case
of the D-BMAP. Note that the fitted k~-MMBP
is characterized by the transition probability

matrix Pes; of the Markov process and A.q

given by
T 3
Pest = , ., , and
P b
a 0
Aoy = ,
0 ay

where p§, 1<i, j<k, is the transition

probability that the fitted MMBP changes from

I3
state [ to state j, lef;.“:l for 1<i, j<k
=

and @, 1<i<k, is the probability that a slot

contains a cell during the time that the MMBP
is in state (. Therefore, a k-MMBP is
characterized by K parameters. It is practically
impossible to obtain these parameters using
the method of moments, particularly when k is
large. Other fitting techniques, such as
minimum distance estimation and least squared
estimation, can be used, but they are time
consuming. Also, P, and A, can be

approximated from grouping of states as in
previous work'?.  The parameters of the fitted

MMBP, 5§ and o, 1<i, j<k can be

calculated as follows:

<S§ES,P(S' n)[ S,‘;E&t[ (s, m)—(s, n)]]
(s,%es,P(s’ n)

(1—a>[ > P(s,n)]

est
pi] -

s, n>0)es,

(s.%E S,P( 5. )

where 0<p5'<1 and 0<e{”<1 for 1<i j<

k. However, unlike the case of the
m-MMBP/Geo/1/K queue, we can see that the

est
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autocorrelation of  coefficients of the
interdeparture time of the D-BMAP/Geo/1/K
queue can fluctuate'®. Due to the characteristic
of the departure process, the model proposed in
the previous works"™™ is not suitable for
characterizing the departure process of a
D-BMAP/Geo/1/K queue. The method estimates
poorly the autocorrelation coefficients and the
interdeparture time distribution. In this section,
we present a simple method for fitting a
k-MMBP to the departure process of a
D-BMAP/Geo/1/K queue. We note that we do
not address the problem of how many stages
the fitted MMBP should consist of. In the
previous works“’ls), the departure process was
assumed to have as many stages as the MMBP
describing the arrival process to the queue.

The departure process of a queue is
governed by the states of the queue.
Therefore, we can obtain valuable information
regarding the departure process from the
states of the queue. By letting each state (s,n)
be a separate state in the departure process,
we can easily characterize the departure
process as a D-MAP with Py = Py and Py =
Pus. Note that this D-MAP does not satisfy
equations (1) and (2), and therefore, it is not
an MMBP. However, we can have an exact
MMBP characterization of the departure
process of the m-MMBP/Geo/1/K queue only

when o¢=0. In order to characterize the
departure process by an MMBP, we have to
obtain P& and " for 1<ij<k so that they

satisfy equations (1) and (2). Given a state,
then in the next slot a transition will occur
with a departure or without a departure. Let
(s,Muwod and (s,n)ya be the two states of the
queue representing that the system shifted to
(s,n) without a departure and with a departure,
respectively. Then, we can separate all states
of the queue (s,n) into (s,Muwee and (s,M)ua.
Note that P(s,n) = P(s,Mwea + P(s,mpa and
P(s,K)wa = 0 for all s. We can now consider
states (s,Mwod and (s,Mhwa for
1<s<m, 0<n<K as a separate state of the

fitted MMBP. The total number of states of
the fitted MMBP is k=2m(K+1). Then, the
departure process of the queue can be exactly
characterized by the k-MMBP with matrices

Pest=P0+P1 and

_[0 0
Aest O I]
where
Py =[P"’°" 0],
Puoad 0
PI:[O P"’d],
0 P,

and I is a m(K+1)xm(K+1) identity
matrix.

We can see that the number of states of the
fitted MMBP is very large when m and K is
large. That is, the computational complexity is
directly proportional to the buffer capacity and
the number of states of the Markov chain of
the arrival process. We can significantly reduce
the number of states by simplv aggregating the
states of the fited MMBP“™. By only
matching the interdeparture time distribution,
the number of states of the fitted MMBP can
be reduced to 2 states”. In this case, however,
we will ignore the autocorrelation which has a
significant impact on the accuracy of the fitted
MMBP. There is a trade-off between the
number of states of the fitted MMBP and the
accuracy of the estimated autocorrelation of the
interdeparture time.

V. Conclusion

In this paper, we obtained the generating
function of the interdeparture time distribution
and the autocorrelation of the departure
process of a D-BMAP/Geo/1/K queue. The
fitting model for characterizing the departure
process of this queue exactly by a k-MMBP
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is proposed in order to capture both the
stationary distribution and the autocorrelation
coefficients of the interdeparture time
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