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Adaptive algorithms based on the higher order error criterion such as the LVCMS and the LMF show
performance degradation if input signal containes additive noise with a heavier-tailed density. Conventional
analysis often neglects higher order terms in the recusion and may not suit for predicting exact behavior of
these higher order algorithms. This paper presents a new convergence analysis which containes all the higher
order terms in the recursion. The analysis shows that the higher order terms, which are often neglected, does
not affect the upper bound on the step size but the misadjiustment. However, the effect decreases sharply
proportional to the square of the step size.
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I . INTRODUCTION

The least variance subject to a constraint on
the mean square error (LVCMS) adaptive
filtering algorithm was introduced by Gibson
and Gray in [1]. The LVCMS algorithm is
motivated by the steepest descent method like
the LMS and LMF algorithms [2,3]. In [1], the
convergence in the mean coefficient error of

the LVCMS algorithm was analyzed without
assumptions on the density function of the
input data as in [2] for the LMS algorithm
and in [3] for the LMF algorithm. The
resulting upper bound on the step size
parameter is quite loose and the actual step
size should be chosen much smaller than the
upper bound to ensure the convergence of the
MSE in practice. This is more evident if
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additive noise has a heavier-tailed density.
Recently, the LMS, LMF, and LVCMS algori-
thms are considered as special cases of a more
general adaptive algorithm [2], and the con-
vergence analysis of the general algorithm is
given [4]. The resulting upper bound is much
tigher than the previous one by a factor of
more than three. However, the analysis neg-
lected the terms higher than the power of two
in the recusion. This paper presents a new
convergence analysis which containes all the
higher order terms in the recusion, and
mvestigate its effect on the upper bound on
the step size and the misadjustment values.

II. THE LVCMS ALGORITHM: AND
THE GENERALIZED ERROR
CRITERION

The adaptive signal processing configuration
of interest is depicted in Fig. 1. The input data

vector at time k& is given by X(&)=[x,(4),
xo(B), -, 2 B]1T, and X(K),k=0,1,2,-,
are assumed to be uncorrelated. The error

signal at time /4 is given by

(k) = d(B)— W (k)X(k)
= (k) —(W(RH-W)"X(R 1
= n(k)— V(R X(k)
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Fig 1. Adaptive Signal Processing Configuration.

where W* is the vector of optimal coefficients,

W(k) is the coefficient vector at time £ so
that

k) =Wk —-W" @

is the coefficient error vector at time % and
n( k) is the noise such that

wB=d kB -XT(HW" 3)

The noise n(k) is assumed to be white and
to have a symmetrical probability density
function with zero mean ard finite higher

order moments. Further, the noise #n(k) is
assumed to be independent of the input data
vector X(£).

The LVCMS algorithm minimizes E{[ (%)
—E[%(R)]]% subject to a constraint on the
MSE E[&%(k)]= 0,2 and has the adaptation
rule [1]

Wk+1)= Wk +4pe(k) X(k)
—2u2a+Ne(HXR) W

where A is a Lagrange multiplier which is
nonpositive.

Now we consider the general error criterion
considered in [5] is

H W, a,b,c,d)= aE[*(k) —E((R))
+BE[* (R]? )
+cE[*(R)]
+d.

Taking partial derivative of H (W, a, b, ¢, d)

with respect to W yields the instantaneous
gradient-based coefficient adaptation rule is
given by

W k+1)= W k) +4ube* (k) X(k)
+2uce(B) X(k). ()]
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We should note that only b and ¢ are
included in the generalized algorithm (5)
since the instantaneous estimate of the
gradient is used. The generalized algorithm
in (5) corresponds to the LMS algorithm if
(b,c)= (0,1), the LMF algorithm if
(b,0)=(1,0), and the LVCMS algorithm if
(6,00=(1,— (265+A).. In the following

analyses, the general adaptation rule (6) is
used although the result does not apply to
the LMF algorithm.

. GENERAL CONVERGENCE
ANALYSIS

We now assume that the input data X(4) is
Gaussian and uncorrelated in time, so that it is
also independent. Therefore, we can apply the
independence assumptions widely used in
stochastic analyses of the LMS type algorithm
[6].

Subtract W* from both sides of (6) to
obtain the recursion for V(4),

W(k+1)= V(k) +4ube*(k) X(k)

+2uce(R) X(k), ™

and then use (1) for (k) to obtain

V(k+1)= V(K +4ubX(H) Zio(f) n'(k)

(=XT(HV(R) ™
+2uc n(k) ~XT(k) VIR X(k).

8)

Since R= E[X(RXT(k)] is symmetric, one
can define the unitary matrix U as

EUXHXT(R U™ =I'=diag(y, 7o, 78). (9

Then

UV(k+1)I§T(k+1)UT= Uvievie uT ,
+l6p2b2{ 20(3;) 2B (= XT(BV(H) 3“}

UX(k)X’;(k) Ut
+4p2 P n(k) — X T (R V(R
UX(RXT (R UT

| 3 (3) w0 (xR )T} ao)
(UX(D VIR U™+ UVIHXT(HUT)
+2ud (k) =X (R V(A)]
{UX(k) ‘QT( AU+ UV(RDXT(RHUT)
+16;z2bc[ 20(3’.) 2B (—XT(R) V() 3*"}

=

[n(B) - XT(RHV(BIUX(HXT(R)UT

Assuming that V(k) lies inside a certain bo-
unded domain £ around the optimal coefficient
vector W, that is, V(k)E£. Then taking the
conditional expectation of UV(A VI(RUT in
(10) with respect to V(&) gives

Ev{UVE+DVIR+DUTY = UV VIR UT
—2uaE{ X" (R V(R [ UX(RVT(RHUT
+UVRXT(HUT]}

+4pP bE((XT (D VIR UX(DX (W UT}

+445 cELUX(DX (B UT) (11)
+16£°dE((XT (B V() UX(AXT(BHUT}
+166° " E((XT (A V() UX(HX (AU}
—4ubE((XT (B V(R [UX(R VTR UT
+UVRXT(RHUTI}.

where K Vk[] denotes the conditional expecta-
tion and

a = 6bE(n*(R)+c

b = 606°E(n' (k) +24bcE(n*(k)) + ¢

¢ = AL’E(n5(B) +4bcE(n" (k) (12)
 +EEHEA(R)

d = 156°E(n*(k) +be.

In obtaining (11), assumptions that the (k)
is independent of the input vector X(%) and
has zero mean are used. Note that the tradi-
tional convergence analysis neglects terms
higher than the power of 2 in (11).

Let

C(k=UV(hHVT(HUT (13)
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It can be shown that

Ev{XT(RAVRH[UX(HVI(HUT 14
+UVBXT(HU Y= C(H+ C(AT.
and using the fourth moment expansion for
Gaussian random variables, that

E {(XT(HV(R UV VT(RUT)

=rC(HIr+uvlrc(»ir. 15

After substituting (14) and (15) into (11), we
may obtain the recursion

Ey[ C(k+D)]= C(BW—2uall'C+ CT]

+4ﬂ b[2FCP+tr(FC‘)F]

+164%B,(B) —4uB;(k)
where

B, = E {(XT(AH VIR UX(HX (BU"}
B, = E{(XT(h) V(D) UX(HXT(HUT)

By = E J{(XT(H V(R UX(HV(RU"
+UV(DXT(RHUTL}. a7
Note that matrices B,(%), By(k), and

By(k) are positive definite if R is positive
definite. Hence, those are bounded above by

some positive definite matrices for V(k)E Q.
Hence, (16) becomes

Eyl C(k+1)] < C(BH—2palrC+ CT]

+4/1 b[2PC‘F+tr(FC‘)I‘] (18)
+4p? cI'+164°B

where

dB(W+BW<B  for (HeQ (19
for some constant B. Since the recursion (18)
holds for all V(k)= £, one can average it over
all possible values of V(&)€ Q. Hence, one has

Cek+1 < C(k) 2,ua[]"C+ CI"]
+4/.t b[ZFCF FeAr O (20)
+4pu? cI'+164°8

since C(k=E C(h].

From (4], we have the recusion obtained by
neglecting the higher order terms in recursion
(11), which is rewritten as,

C(k+1) = C(k) 2ua{I’'C(K)+ C(k)T}
+4,u b{zrc(k)I“Hr[Pc(k)]F}
+4ptel 21
where
C(h=E[UV(AVT(RHUT]. (22)

Note that recursion (20) is identical to recur-
sion (21) used in the convergence analysis
except for the last constant term. The constant
term does not affect the upper bound on the
step size . To derive the expression for mi-
sadjustment, one should use recusion (21) in-
stead of (20). Therefore, the resulting expre-
ssion for misadjustment may not predict the
actual misadjustment values effectively due to
additional constant terms in (20). Effect of
additional constant term on the misadjustment

decreases sharply with g since it is of second

order in p.

V. CONCLUSIONS

A general convergence analysis of the
LVCMS algorithm has been presented under
the assumption of uncorrelated Gaussian
input data. The general error criterion, which
admits the LMS and LMF criteria as well as
the LVCMS criterion, was considered. The
results so obtained is applied to the LMF,
and LVCMS algorithms. The
convergence algorithm presented here include

general
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all the higher order terms in the recusion,
which are often neglected for convience of
analysis. The analysis shows that the upper
bound on the step size does not affect by
the neglected higher order terms. If the
expression for the misadjustment is derived,
the predicted value is smaller than the actual
value due to the neglected higher order
terms. The difference, however, will be
proportional to the square of the step size
and may be ignored for small step sizes.
Therefore, it is reasonable to ignore the
higher order terms in performance analysis
of the adaptive algorithms which use higher
order error criterion.
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