Purification and Characterization of Phytoferritin

  • Oh, Suk-Heung (Department of Biotechnology, Woosuk University) ;
  • Cho, Sung-Woo (Department of Biochemistry, College of Medicine, University of Ulsan) ;
  • Kwon, Tae-Ho (Institute for Molecular Biology and Genetics, and Faculty of Biological Sciences, Chonbuk National University) ;
  • Yang, Moon-Sik (Institute for Molecular Biology and Genetics, and Faculty of Biological Sciences, Chonbuk National University)
  • 투고 : 1996.08.08
  • 발행 : 1996.11.30

초록

Ferritins from germinated pumpkin seeds were isolated by ammonium sulfate precipitation (0.55 saturation), ion-exchange chromatography on DEAE-cellulose, and gel filtration chromatographies on Sephacryl S-300 and Sephadex G-100. Pumpkin ferritin contains less iron than soybean ferritin. Pumpkin ferritin cross-reacted with anti-soybean ferritin antiserum made in rabbit, and showed two distinct antibody reactive bands, both of equal intensity. The pumpkin ferritins corresponding to the two bands were separable by centrifugation in a sucrose gradient (20~50%). The molecular weights of the native pumpkin ferritins based on the estimation of sucrose gradient centrifugation, gel filtration on Sephacryl S-300 and non-denaturing polyacrylamide gel electrophoresis appeared to be: 530~580 KD (the large molecular weight pumpkin ferritin) and 330-360 KD (the small molecular weight pumpkin ferritin) The large molecular weight pumpkin ferritin contains less iron. Both pumpkin ferritins cross-reacted with anti-soybean ferritin antibody with a spur formation suggesting partial antigenic recognition.

키워드

참고문헌

  1. Nutritive Value of American Foods, US Department of Agriculture Handbook 456 Adams, C.F.
  2. Annu. Rev. Biochem. v.49 Aisen, P.;Listowsky, I. https://doi.org/10.1146/annurev.bi.49.070180.002041
  3. J. Biol. Chem. v.253 Arioso, P.;Adelman, T.G.;Drysdale, J.W.
  4. Anal. Biochem. v.72 Bradford, M.M. https://doi.org/10.1016/0003-2697(76)90527-3
  5. J. Biol. Chem. v.262 Sczekan, S.R.;Joshi, J.G.
  6. Immunodiffusion Crowle, A.
  7. Proc. Natl. Acad. Sci. USA v.84 Fleming, J.;Joshi, J.G. https://doi.org/10.1073/pnas.84.22.7866
  8. Eur. J. Biochem. v.231 Fobis-Loisy, I.;Loridon, K.;Lobreaux, S.;Lebrun, M.;Briat, J. https://doi.org/10.1111/j.1432-1033.1995.tb20739.x
  9. BioFactors v.1 Joshi, J.G.;Clauberg, M.
  10. BioFactors v.2 Joshi, J.G.
  11. Plant Physiol. v.83 Ko, M.P.;Huang, P.Y.;Huang, J.S.;Barker, K.R. https://doi.org/10.1104/pp.83.2.299
  12. J. Biol. Chem. v.263 Laulhere, J.P.;Lescure, A.M.;Briat, J.F.
  13. Biochem. J. v.165 Manwell C. https://doi.org/10.1042/bj1650487
  14. J. Biol. Chem. v.236 Martin, R.G.;Ames, B.N.
  15. J. Biol. Chem. v.258 Price, D.J.;Joshi. J.G.
  16. J. Biol. Chem. v.257 Shull, G.E.;Theil, E.C.
  17. Adv. Inorg. Biochem. v.5 Theil, E.C.
  18. Plant Sci. v.39 Van Der Mark, F.;Van Den Briel, W. https://doi.org/10.1016/0168-9452(85)90192-X
  19. Biochem. Biophys. Res. Commun. v.192 Wicks, R.E.;Entsh, B. https://doi.org/10.1006/bbrc.1993.1487