Effect of Arginine Modification of Cytosolic Component $p47^{phox}$ by Phenylglyoxal on the Activation of Respiratory Burst Oxidase in Human Neutrophils

  • Park, Jeen-Woo (Department of Biochemistry College of Natural Sciences, Kyungpook National University)
  • Received : 1996.07.16
  • Published : 1996.11.30

Abstract

The NADPH oxidase of phagocytes catalyzes the reduction of oxygen to $O_{2}^{-}$ at the expense of NADPH The enzyme is dormant in resting neutrophils and hecomes activated on stimulation. During activation. $p47^{phox}$ (phagocyte oxidase factor), a cytosolic oxidase subunit, becomes extensively phosphorylated on a number of serines located between S303-S379. Although the biochemical role of phosphorylation is speculative, it has been suggested that phosphorylation could neutralize the strongly cationic C-terminal which may result in the change of conformation of $p47^{phox}$ and subsequent translocation of this protein and other cytosolic components to the membrane. In order to mimic the effect of phosphorylation in terms of neutralizing the positive charges, recombinant $p47^{phox}$ was treated with phenylglyoxal, which removes positive charges of arginine residues. Modification of recombinant $p47^{phox}$ resulted in the activation of oxidase in a cell-free translocation system as well as a conformational change in recombinant $p47^{phox}$ which may be responsible for the activation of the enzyme.

Keywords

References

  1. N. Engl. J. Med. v.298 Babior, B.M. https://doi.org/10.1056/NEJM197803232981205
  2. Adv. Enzymol. Areas Mol. Biol. v.65 Babior, B.M.
  3. J. Cell Biol. v.97 Borregaard, N.;Heiple, J.M.;Simons, E.R.;Clark, R.A. https://doi.org/10.1083/jcb.97.1.52
  4. Cell. Immunol. v.88 Bromberg, Y.;Pick, E. https://doi.org/10.1016/0008-8749(84)90066-2
  5. J. Biol. Chem. v.260 Bromberg, Y.;Pick, E.
  6. J. Clin. Invest. v.75 Cumutte, J.T. https://doi.org/10.1172/JCI111885
  7. J. Biol. Chem. v.270 DeLeo, F.R.;Nauseef, W.M.;Jesaitis, A.J.;Burritt, J.B.;Clark, R.A.;Quinn, M.T. https://doi.org/10.1074/jbc.270.44.26246
  8. J. Biol. Chem. v.269 El Benna, J.;Ruedi, J.; Babior, B.M.
  9. J. Biol. Chem. v.269 El Benna, J.;Faust, L.P.;Babior, B.M.
  10. Blood Cells Mol. Dis. v.15 El Benna, J.;Park, J.W.;Ruedi, J.;Babior, B.M.
  11. J. Clin. Invest. v.96 Faust, L.P.;El Benna, J.;Babior, B.M.;Chanock, S.J. https://doi.org/10.1172/JCI118187
  12. J. Biol. Chem. v.261 Hayakawa, T.;Suzuki, K.;Suzuki, S.;Andrews, P.C.;Babior, B.M.
  13. J. Leukocyte Biol. v.86 Heyneman, R.A.;Vercauteren, R.E.
  14. J. Clin. Invest. v.87 Heyworth, P.G.;Curnutte, J.T.;Nauseef, W.M.;Volpp, B.D.;Pearson, D.W.;Rosen, H.;Clark, R.A. https://doi.org/10.1172/JCI114993
  15. Nature v.227 Laemmli, U.K. https://doi.org/10.1038/227680a0
  16. J. Clin. Invest. v.75 McPhail, L.C.;Shirly, P.S.;Clayton, C.C.;Snyderman, R. https://doi.org/10.1172/JCI111884
  17. J. Biol. Chem. v.268 Nauseef, W.M.;McCormick, S.;Renee, J.;Leidal, K.G.;Clark, R.A.
  18. J. Biol. Chem. v.267 Nakanishi, A.;Imajoh-Ohmi, S.;Fujinawa, T.;Kikuchi, H.;Kanegasaki, S.
  19. Biochem. Biophys. Res. Commun. v.220 Park, J.W. https://doi.org/10.1006/bbrc.1996.0351
  20. Biochem. Biophys. Res. Commun. v.211 Park, J.W.;Ahn, S.M. https://doi.org/10.1006/bbrc.1995.1829
  21. J. Biol. Chem. v.267 Park, J.W.;Babior, B.M.
  22. Biochemistry v.33 Park, J.W.;El Benna, J.;Scott, K.E.;Christensen, B.L.;Chanock, S.J.;Babior, B.M. https://doi.org/10.1021/bi00176a021
  23. J. Biol. Chem. v.267 Park, J.W.;Ma, M.;Ruedi, J.M.;Smith, R.M.;Babior, B.M.
  24. Gene v.67 Smith. D.R.;Johnson, K.S. https://doi.org/10.1016/0378-1119(88)90005-4
  25. J. Biol. Chem. v.243 Takahashi, K.
  26. Proc. Natl. Acad. Sci. USA v.76 Towbin, H.;Staehlin, T.;Gordon, J. https://doi.org/10.1073/pnas.76.9.4350