Biochemical Characterization of the Interaction between Small Phosphoproteins and Transducin in Frog Photoreceptors

  • Received : 1996.04.10
  • Published : 1996.07.31

Abstract

Components I and II (CI&II) are major phosphoproteins in the frog rod outer segments (ROS) of retina, whose phosphorylation is light- and cyclic nucleotide-dependent. Although it was reported that CI & II could be chemically cross-linked to ${\beta}{\gamma}-subunit$ of transducin (${\beta}{\gamma}_t$), it was not clear whether CI&II physically interact with ${\beta}{\gamma}_t$, under native conditions. CI&II extracted by hypotonic washing fo ROS membranes showed an overlapped migration with ${\beta}{\gamma}_t$, in sucrose density gradient centrifugation. The elution profile of CI&II in the peripheral membrane fractions from gel filtration chromatography also overlapped that of ${\beta}{\gamma}_t$. These hydrodynamic parameters indicate that the native molecular state of CI&II in the peripheral membrane fraction appears to be within a complex, most likely with ${\beta}{\gamma}_t$. CI&II coeluted with ${\beta}{\gamma}_t$, showed no phosphorylation by endogenous kinase which phosphorylates a serine of CI&II in other fractions. The purified CI&II were not able to inhibit trypsin-activated cGMP-phosphodiesterase, and CI&II were not recognized by a monoclonal antibody against the ${\gamma}-subunit$ of transducin, indicating that CI&II are not y-subunit of PDE or transducin. Thus, it is likely that native CI&II, which undergo a light-dependent phosphorylation/dephosphorylation cycle, can associate with ${\beta}{\gamma}$, in frog photoreceptor membranes, and the complex formation has an inhibitory effect on the endogenous phosphorylation of CI&II.

Keywords

References

  1. J. Biol. Chem. v.264 Binder, B.M.;Brewer, E.;Bownds, M.D.
  2. The Molecular Mechanism of Photoreception Bownds, M.D.;Brewer, E.
  3. J. Gen. Physiol. v.68 Brodie, A.E.;Bownds, M.D. https://doi.org/10.1085/jgp.68.1.1
  4. J. Gen. Physiol. v.71 Cohen, A.I.;Hall, I.A.;Ferrendelli, J.A. https://doi.org/10.1085/jgp.71.5.595
  5. Annu. Rev. Biochem. v.56 Gilman, A.G. https://doi.org/10.1146/annurev.bi.56.070187.003151
  6. Biophysical J. v.51 Hamm, H.E.
  7. J. Gen. Physiol. v.95 Hamm, H.E. https://doi.org/10.1085/jgp.95.3.545
  8. J. Gen. Physiol. v.84 Hamm, H.E.;Bownds, M.D. https://doi.org/10.1085/jgp.84.2.265
  9. Biochemistry v.25 Hamm, H.E.;Bownds, M.D. https://doi.org/10.1021/bi00364a010
  10. J. Biol. Chem. v.263 Hingorani, V.N.;Tobias, D.T.;Henderson, J.T.;Ho, Y.K.
  11. J. Biol. Chem. v.257 Hurley, J.B.;Stryer, L.
  12. Anal. Biochem. v.176 Kamp, M.P.;Sefton, B.M. https://doi.org/10.1016/0003-2697(89)90266-2
  13. J. Biol. Chem. v.265 Lee, R.H.;Brown, B.M.;Lolley, R.N.
  14. Biochemistry v.26 Lee, R.H.;Liebman, B. S.;Lolley, R.N. https://doi.org/10.1021/bi00387a036
  15. J. Biol. Chem. v.267 Lee, R.H.;Ting, T.D.;Lieberman, B.S.;Tobias, D.E.;Lolley, R.N.;Ho, Y.K.
  16. Methods Enzymol. v.81 Liebman, P.A.;Evanczuk, T.
  17. FASEB J. v.4 Lolley, R.N.;Lee, R.H. https://doi.org/10.1096/fasebj.4.12.1697545
  18. J. Biol. Chem. v.262 Mattera, R.;Codina, J.;Sekura, R.D.;Bimbaum, L.
  19. J. Gen. Physiol. v.74 Polans, A.S.;Hermolin, J.;Bownds, M.D. https://doi.org/10.1085/jgp.74.5.595
  20. Annu. Rev. Cell Biol. v.2 Stryer, L.;Bourn, H.R.
  21. Inv. Ophthal. Vis. Sci. v.29 Suh, K.H.;Hamm, H.E.
  22. Biochemistry v.35 Suh, K.H.;Hamm, H.E. https://doi.org/10.1021/bi9518656
  23. Biochemistry v.30 Ting, T.D.;Ho, Y.K. https://doi.org/10.1021/bi00101a013
  24. J. Biol. Chem. v.269 Tsuboi, S.;Matsumoto, H.;Jackson, K.W.;Tsujimoto, K.;Williams, T.;Yamazaki, K.
  25. Biochem. J. v.295 Udovichenko, I.P.;Cunnick, J.;Gonzales, K.;Takemoto, D.J. https://doi.org/10.1042/bj2950049
  26. J. Gen. Physiol. v.73 Woodruff, M.;Bownds, M.D. https://doi.org/10.1085/jgp.73.5.629
  27. J. Gen. Physiol. v.69 Woodruff, M.L.;Bownds, M.D.;Green, S.H.;Morrisey, J.L.;Shedlovsky, A. https://doi.org/10.1085/jgp.69.5.667