Effect of Heparin on the High Affinity KGF and aFGF Binding to the Chimeric KGFR-HFc

  • Cheon, Hyae-Gyeong (Korea Research Institute of Chemical Technology (KRICT), Pharmaceutical Screening Center)
  • 투고 : 1995.12.22
  • 발행 : 1996.05.31

초록

To investigate the role of heparin in keratinocyte growth factor (KGF) and acidic fibroblast growth factor (aFGF) high affinity binding to the KGF receptor (KGFR), a cell free system was established which utilized a secreted chimeric molecule between the KGFR extracellular domain and the immunoglobulin heavy chain Fc domain (KGFR-HFc). KGFR-HFc was purified from NIH 3T3 cells and demonstrated the binding of $[^3H]-heparin$ as well as heparin Sepharose. Scatchard analysis showed that the dissociation constant for heparin binding to KGFR-HFc was 140 nM. High affinity KGF and aFGF binding to KGFR-HFc remained unchanged after treatment with 0.6 M NaCl, which is the concentration sufficient to release any bound heparin to the KGFR-HFc. These results strongly suggest that although the KGFR interacts with heparin, the presence of heparin is not absolutely required for high affinity binding of either KGF or aFGF to the KGFR.

키워드

참고문헌

  1. Proc. Natl. Acad. Sci. USA v.85 Baird, A.;Schubert, D.;Ling, N.;Guillemin, R. https://doi.org/10.1073/pnas.85.7.2324
  2. J. Biol. Chem. v.265 Bottaro, D.P.;Rubin, J.S.;Ron, D.;Finch, P.W.;Florio, C.;Aaronson, S.A.
  3. Annu. Rev. Biochem. v.58 Burgess, W.H.;Maciag, T. https://doi.org/10.1146/annurev.bi.58.070189.003043
  4. Proc. Natl. Acad. Sci. USA v.91 Cheon, H.G.;LaRochelle, W.J.;Bottaro, D.P.;Burgess, W.H.;Aaronson, S.A. https://doi.org/10.1073/pnas.91.3.989
  5. Proc. Natl. Acad. Sci. USA v.88 Eriksson, A.E.;Cousens, L.S.;Weaver, L.H.;Matthews, B.W. https://doi.org/10.1073/pnas.88.8.3441
  6. J. Cell Physiol. v.140 Flaumenhaft, R.;Moscatelli, D.;Saksela, O.;Rifkin, D.B. https://doi.org/10.1002/jcp.1041400110
  7. Biochemistry v.27 Harper, J.W.;Lobb, R.R. https://doi.org/10.1021/bi00402a027
  8. Science v.259 Kan, M.;Wang, F.;Xu, J.;Crabb, J.W.;Hou, J.;Mckeehan, W.L. https://doi.org/10.1126/science.8456318
  9. Biochem. Biophys. Res. Commun. v.172 Kaplow, J.M.;Bellot, F.;Crumley, G.;Dionne, C.A.;Jaye, A. https://doi.org/10.1016/S0006-291X(05)80179-2
  10. Prog. Growth Factor Res. v.1 Klagsbrun, M. https://doi.org/10.1016/0955-2235(89)90012-4
  11. Proc. Natl. Acad. Sci. USA v.82 Klagsbrun, M.;Shing, Y. https://doi.org/10.1073/pnas.82.3.805
  12. Proc. Natl. Acad. Sci. USA v.88 Lee, M.K.;Lander, A.D. https://doi.org/10.1073/pnas.88.7.2768
  13. Proc. Natl. Acad. Sci. USA v.89 Miki, T.;Bottaro, D.P.;Fleming, T.P.;Smith, C.L.;Burgess, W.L.;Chan, A.M.L.;Aaronson, S.A. https://doi.org/10.1073/pnas.89.1.246
  14. J. Cell Physiol. v.131 Moscatelli, D. https://doi.org/10.1002/jcp.1041310118
  15. J. Biol. Chem. v.267 Ornitz, D.M.;Leder, P.
  16. Mol. Cell. Biol. v.12 Omitz, D.M.;Yayon, A.;Flanagan, J.G.;Svahn, CM.;Levi, E.;Leder, P. https://doi.org/10.1128/MCB.12.1.240
  17. J. Cell Biol. v.107 Saksela, O.;Moscatelli, D.;Sommer, A.;Rifkin, D.B. https://doi.org/10.1083/jcb.107.2.743
  18. Science v.223 Shing, Y.;Folkman, J.;Sullivan, R.;Butterfield, C.;Murray, J.;Klagsbrum, M. https://doi.org/10.1126/science.6199844
  19. J. Biol. Chem. v.264 Walicke, P.A.;Feige, J.J.;Baird, A.
  20. Cell v.64 Yayon, A.;Klagsbrun, M.;Esko, J.D.;Leder, P.;Ornitz, D.M. https://doi.org/10.1016/0092-8674(91)90512-W
  21. Proc. Natl. Acad. Sci. USA v.83 Zhang, J.;Cousens, L.S.;Barr, P.J.;Sprang, S.R.
  22. Science v.251 Zhu, X.;Komiya, H.;Chirino, A.;Faham, S.;Fox, G.M.;Arakawa, T.;Hsu, B.T.;Rees, D.C. https://doi.org/10.1126/science.1702556