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PENALIZED NAVIER–STOKES EQUATIONS WITH
INHOMOGENEOUS BOUNDARY CONDITIONS

Hongchul Kim

Abstract. This paper is concerned with the penalized station-

ary incompressible Navier–Stokes system with the inhomogeneous
Dirichlet boundary condition on the part of the boundary. By tak-

ing a generalized velocity space on which the homogeneous essen-

tial boundary condition is imposed and corresponding trace space
on the boundary, we pose the system to the weak form which the

stress force is involved. We show the existence and convergence of
the penalized system in the regular branch by extending the div-

stability condition.

1. Introduction

The purpose of this paper is to show the existence and convergence
of the solution for the penalized stationary Navier–Stokes equations

(1.1) −ν∆uε + (uε · ∇)uε +∇pε = f in Ω ,

and

(1.2) ∇ · uε = −εpε in Ω

along with inhomogeneous Dirichlet boundary conditions on a portion
of the boundary

(1.3) uε =

{
0 on Γ0

g on Γg ,
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where Ω is a bounded open domain in RI n. We suppose that the
boundary Γ = ∂Ω is composed of two disjoint parts Γ0 and Γg. Here,
ν denotes the kinematic viscosity in the nondimensional form and f
the given external body force.

The penalty method is often introduced to relax the incompress-
ibility constraint with regard to Navier–Stokes system by introducing
an artificial compressibility −εpε instead of the incompressibility con-
straint and to expect near incompressibility. For the formulation of
penalty method and its numerical analysis, one may refer to [1], [3], [8]
and [9]. Unlike the situations of [3] and [10], inhomogeneous boundary
condition g is imposed on the part Γg of the boundary, which may
induce some troublesome jumps around interface of adjacent bound-
ary. This dynamical situations are often raisen in connection with fluid
controls([4], [5] and [6]). In this paper, we will take two different set-
tings of function spaces on the boundary, put the penalized system
(1.1)–(1.3) into corresponding variational form and investigate nonlin-
ear form of the system. The existence and convergence of the solutions
of penalized system will be shown.

2. Preliminaries

Throughout this paper, I will be used to denote the identity map-
ping or the identity matrix, and C a generic constant whose value and
meaning also vary with context. For Galerkin type variational formu-
lations, we denote by Hs(Ω), the standard Sobolev space of order s
with respect to the set Ω, which is the domain occupied by the flow, or
its boundary Γ, or part of its boundary. For vector–valued functions
and spaces, we use boldface notation, i.e., Hs(Ω). We denote the inner
product on Hs(Ω) or Hs(Ω) by (·, ·)s and its norm by ‖ · ‖s =

√
(·, ·)s.

Since u = 0 along Γ0, we take a generalized velocity space to be

V = {v ∈ H1(Ω) |v = 0 on Γ0} ;

i.e., V is the space on which the homogeneous essential boundary con-
dition is imposed. Let V∗ be the dual space of V. Note that V∗ is a
subspace of H−1(Ω), where the latter is the dual space of H1

0(Ω). We
denote the duality between V∗ and V by < ·, · >−1.
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For the other face Γg of a Lipschitz continuous domain Ω, we take

L2
g(Γ) = { s ∈ L2(Γ) | s = 0 on Γ0 }

and let γg : V −→ L2
g(Γ) be the trace mapping. Let us define

W = γg(V) .

Let W∗ denote its dual space and let < ·, · >−1/2,Γg
denote the duality

between W∗ and W. On the other hand, we denote Hs(Γg) as the
space of the restrictions to Γg of the functions in Hs(Γ) for each s ≥ 0
and H−s(Γg) as its dual space. It is clear that the restrictions to Γg
of the functions of W is a closed subspace of H1/2(Γg). For the given
boundary force, we take

Hs
0(Γg) =

{
φφφ ∈ Hs(Γg) | support of φφφ ⊂ Γg and

∫
Γg

φφφ · n dΓ = 0
}
.

We assume that the boundary force satisfy

(2.1) support of g ⊂ Γg and
∫

Γg

g · n dΓ = 0 .

This condition is necessary for the compatibility and regularity for the
solutions. By the help of the condition (2.1), we assume g ∈ Hs

0(Γg) for
some s ≥ 1/2. The setting of W and g avoids any troublesome jumps
which may follow if one just uses H1/2(Γg) to absorb the homogeneous
boundary data. Now, let s be an element of W. It is well-known that
W is a Hilbert space with the norm

‖s‖1/2,Γg
= inf

v∈V,γgv=s
‖v‖1,Ω ∀s ∈ W .

Let s∗ belong to W∗. By the definition of the dual norm, we note that

‖s∗‖−1/2,Γg
= sup

0 6=s∈W

< s∗, s >−1/2,Γg

‖s‖1/2,Γg

.

In [4], we have derived the following alternate definition for the norm
‖ · ‖−1/2,Γg

over W∗. It will be useful in showing the existence and
convergence of penalized solutions in §4.
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Lemma 2.1. It holds that

(2.2) ‖s∗‖−1/2,Γg
= sup

0 6=v∈V

< s∗, γgv >−1/2,Γg

‖v‖1,Ω
∀s∗ ∈ W .

We will use the quotient space

S = {p ∈ L2(Ω) |
∫

Ω

pdΩ = 0}

for the space of generalized pressures.

3. Weak variational formulation

Let D(v) =
1
2
(∇v + (∇v)T ) be a symmetric tensor of first-order

derivatives of v, which represents the deformation following from the
velocity v of the flow. We will denote the tensor product between
deformation tensors by

D(u) :D(v) =
1
4

n∑
i,j=1

∫
Ω

(
∂ui
∂xj

+
∂uj
∂xi

) (
∂vi
∂xj

+
∂vj
∂xi

)
dΩ .

We will use the two bilinear forms

a(u,v) = 2
∫

Ω

D(u) :D(v) dΩ ∀u, v ∈ H1(Ω)

and

b(v, q) = −
∫

Ω

q∇ · v dΩ ∀v ∈ H1(Ω) and ∀q ∈ L2(Ω) ,

and the trilinear form

c(w,u,v) =
∫

Ω

(w · ∇)u · v dΩ ∀u, v, w ∈ H1(Ω) .

These forms are continuous in the sense that there exist constant C > 0
such that

|a(u,v)| ≤ C‖u‖1‖v‖1 ∀u, v ∈ H1(Ω) ,
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|b(v, q)| ≤ C‖v‖1‖q‖0 ∀v ∈ H1(Ω) and q ∈ L2(Ω)

and
|c(w,u,v)| ≤ C‖u‖1‖v‖1‖w‖1 ∀u, v, w ∈ H1(Ω) .

Moreover, we have the coercivity properties

(3.1) a(v,v) ≥ C‖v‖2
1 ∀v ∈ V

and the div-stability condition

(3.2) inf
q∈S

sup
v∈V

b(v, q)
‖v‖1‖q‖0

≥ C .

For details concerning this forms one may consult [3], [6] and [10]. Em-
ploying this forms, the penalized equations are recast into the following
particular weak form

(3.3) νa(uε,v) + b(v, pε) + c(uε,uε,v)
− < tε, γgv >−1/2,Γg

=< f ,v >−1 ∀v ∈ V ,

(3.4) b(uε, q) = ε(pε, q)0 ∀q ∈ S

and

(3.5) < s∗,uε >−1/2,Γg
=< s∗,g >−1/2,Γg

∀s∗ ∈ W∗ .

Note that ∇ · ((∇uε)T · v) = ∇uε :∇v + ∆uε · v. Since

−
∫

Ω

∆uε · v dΩ =
∫

Ω

∇uε :∇v dΩ−
∫

Γ

((∇uε)T · v) · n dΓ

=
∫

Ω

∇uε :∇v dΩ−
∫

Γ

((∇uε) · n) · v dΓ

and v = 0 along Γ0, we obtain the formula for tε over Γg

(3.6) tε = −pεn + 2νD(uε) · n

in the distribution sense, where n denotes the outward unit normal vec-
tor. This represents the stress force along the inhomogeneous boundary
Γg due to the penalized deformation.
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Remark 3.1. As in [9], one may add an additional stabilization

term
1
2

∫
Ω

(∇ · uε)uε · uε dΩ to the left hand side of the equation (3.3).

This extra term may be necessary for the analyticity of the penalized
solutions in the sense of Cauchy–Kowalevskaya theorem. However, this
extra term results in a minor change to the trilinear form c(·, ·, ·) in
our case.

Remark 3.2. The penalty parameter ε in our case may be chosen
in various ways. It should be chosen small enough so that the com-
pressibility and pressure errors due to the penalization are negligible,
but not so small to avoid ill-conditioning of the system. In the numer-
ical process, its choice also depends on the dynamic viscosity and the
machine precision (cf. [8]).

4. Existence and convergence of penalized solutions

In this section, we derive existence and convergence results of the
penalized solution of (uε, pε, tε) to the solution (u, p, t) of the primal
Navier–Stokes system. We first invoke the nonlinear functional for-
mulation as in [2] and [3], and then we recast the system (3.3)–(3.5)
into the corresponding functional setting to show the main convergence
results. For the sake of completeness, we will first state the relevant
results, specialized to our needs.

The abstract structure of the parameter–dependent nonlinear prob-
lems we are concerned with is of the form ;

(4.1) F (λ, ψ) ≡ ψ + TG(λ, ψ) = 0 ,

where T : Y → X is a bounded linear mapping, G : Λ×X → Y is a
C2 nonlinear mapping, X and Y are Banach spaces and Λ is a compact
interval of RI . Let the solution ψ of (4.1) depend on the parameter λ.
We say that {(λ, ψ(λ)) |λ ∈ Λ} is a branch of solutions of (4.1) if λ 7→
ψ(λ) is a continuous function from Λ into X such that F (λ, ψ(λ)) = 0.
By DψF , we denote the Fréchet derivative of F (·, ·) with respect to the
second variable. If DψF (λ, ψ(λ)) is an isomorphism from X into X for
all λ ∈ Λ, then the branch λ 7→ ψ(λ) is called a regular branch. Note
that DψF (λ, ψ) = I + TDψG(λ, ψ) from (4.1). Hence, if we consider
DψG(λ, ·) as a bounded linear mapping from X into Z, a subspace of
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Y , where the inclusion Z ⊂ Y is a continuous embedding and T |Z :
Z → X is compact, then DψF appears to be a compact perturbation
of the identity. Approximations are defined by introducing a subspace
Xh of X and an approximating operator Th ∈ L(Y,Xh), where L
denotes the bounded linear operators between Banach spaces. The
approximation problem corresponding to the nonlinear form (4.1) is to
seek ψh ∈ Xh such that

(4.2) Fh(λ, ψh) ≡ ψh + ThG(λ, ψh) = 0 .

The convergence to a regular branch of solutions of the approximation
problem (4.2) is ensured under the following three assumptions;

(4.3) DψG(λ, ψ) ∈ L(X,Z) ∀λ ∈ Λ and ψ ∈ X ,

(4.4) lim
h→0

‖(Th − T )y‖X = 0 ∀y ∈ Y

and

(4.5) lim
h→0

‖(Th − T )‖L(Z,X) = 0 .

Concerning approximations of the regular branch, we can now state
the following fundamental result that will be used in the sequel. For
the proof, refer to [2] and [3].

Theorem 4.1. Assume that G : Λ × X → Y is a C2 nonlinear
mapping and that the second Fréchet derivative DψψG is bounded on
all bounded sets of Λ × X. Assume that (4.3)–(4.5) hold and that
{(λ, ψ(λ)) | λ ∈ Λ} is a branch of regular solutions of (4.1). Then,
there exists a neighborhood O of the origin in X and, for h ≤ h0

small enough, a unique C2 function λ ∈ Λ 7→ ψh(λ) ∈ Xh such that
{(λ, ψh(λ)) | λ ∈ Λ} is a branch of regular solutions of (4.2) and
ψh(λ) − ψ(λ) ∈ O for all λ ∈ Λ. Moreover, there exists a positive
constant C, independent of h and λ, such that

(4.6) ‖ψh(λ)− ψ(λ)‖X ≤ C‖(Th − T )G(λ, ψ(λ))‖X ∀λ ∈ Λ .
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The stationary Navier–Stokes equations can be posed in the nonlin-

ear form via the Stokes operator and the parameter λ =
1
ν

= Reynold
number Re. The fundamental idea of a regular branch in the study
of solutions of the stationary Navier–Stokes equations is based on the
fact that bifurcation points and turning points are quite rare (cf. [11]).

We can apply this structure to the penalized Navier–Stokes system
(1.1)–(1.3) for the study of the convergence when ε tends to 0. We
take X = V × S × W∗, Y = V∗ × W and Z = L3/2(Ω) × {0}. We
also take Xh = X in the above discussion. For the parameter, we take

λ =
1
ν
∈ Λ ⊂ RI +, where RI + denotes the nonnegative real numbers

and Λ a compact interval in RI +−{0}. We define the solution operator
T ∈ L(Y;X) for the Stokes problem with inhomogeneous boundary
conditions by T (f̂ , ĝ) = (û, p̂, t̂) if and only if

(4.7)
a(û,v) + b(v, p̂)− < t̂,γgv >−1/2,Γg

=< f̂ ,v >−1 ∀v ∈ V ,

b(û, q) = 0 ∀q ∈ S ,
< s∗, γgû >−1/2,Γg

=< s∗, ĝ >−1/2,Γg
∀s∗ ∈ W∗ .

The nonlinearity of the Navier–Stokes equations is taken into account
by the mapping G : Λ×X → Y ( (λ, (w, q, τττ)) 7→ (ηηη,κκκ) ) defined by

(4.8)
< ηηη,v >−1= λ c(w,w,v)− λ < f ,v >−1 ∀v ∈ V ,

< s∗, κκκ >−1/2,Γg
= − < s∗,g >−1/2,Γg

∀s∗ ∈ W∗ ,

where (f ,g) is given in V∗ ×W.
Since the weak formulation of the Navier–Stokes equations can be

written by

(4.9)

a(u,v) + b(v, λp)− < λt, γgv >−1/2,Γg

=− [λc (u,u,v)− λ < f ,v >−1] ∀v ∈ V ,

b(u,λq) = 0 ∀q ∈ S ,
< s∗, γgu >−1/2,Γg

= − [− < s∗,g >−1/2,Γg
] ∀s∗ ∈ W∗ ,

and the mapping G corresponds to the weak formulation of{
ηηη = λ(w · ∇)w − λ f ,

κκκ = −g .
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Substituting w = u, we obtain from (4.9) that q = λp, τττ = λt and
(u, λp, λt) = −TG(u, λp, λt). Hence, we have

(4.10) (u, λp, λt) + TG(λ, (u, λp, λt)) = 0

which is equivalent to the weak variational form (4.9) of the primal
stationary incompressible Navier–Stokes equations.

Next, we associate T ε : Y → X ( (f̂ , ĝ) 7→ (ûε, p̂ε, t̂ε) ) with the
penalized Stokes operator defined by

(4.11)
a(ûε,v) + b(v, p̂ε)− < t̂ε, γgv >−1/2,Γg

=< f̂ ,v >−1 ∀v ∈ V ,

b(ûε, q) = ε (p̂ε, q)0 ∀q ∈ S ,
< s∗, γgûε >−1/2,Γg

=< s∗, ĝ >−1/2,Γg
∀s∗ ∈ W∗ .

Then, the penalized Navier–Stokes equations (1.1)–(1.3) is equivalent
to

(4.12) (uε, λpε, λtε) + T εG(λ, (uε, λpε, λtε)) = 0 .

Now, let us turn to the existence of solutions for the specified systems
(4.7) and (4.11). We need to extend the div-stability condition by
coupling the presure and the stress force on Γg together.

Lemma 4.2. For every (q, s∗) ∈ S × W∗, there exists a positive
constant C such that

(4.13) C‖(q, s∗)‖S×W∗ ≤ sup
0 6=v∈V

b(v, q)− < s∗,v >−1/2,Γg

‖v‖1
.

Proof. Let (q, s∗) ∈ S ×W∗ be given. By applying Riesz represen-
tation theorem, given s∗ ∈ W∗ one can choose an s ∈ W such that
‖s‖1/2,Γg

= ‖s∗‖−1/2,Γg
and < s∗, ηηη >−1/2,Γg

=
∫
Γg

s · ηηη dΓ ∀ηηη ∈ W .

Next, one may choose a v ∈ V such that

(4.14)
{ ∇ · v = q in Ω ,

v = −s on Γg .
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Since q ∈ S, (4.14) is wellposed (cf. [8]) and it follows that

‖v‖1 ≤ C1(‖q‖0 + ‖s‖1/2,Γg
) = C1(‖q‖0 + ‖s∗‖−1/2,Γg

)

for some positive constant C1. For this choice of v and s, we have

b(v, q)− < s∗, γgv >−1/2,Γg
=

∫
Ω

(∇ · v)q dΩ−
∫

Γg

s · (γgv) dΓ

= ‖q‖2
0 + ‖s‖2

1/2,Γg
= ‖q‖2

0 + ‖s∗‖2
−1/2,Γg

≥ 1
2
(‖q‖0 + ‖s∗‖−1/2,Γg

)2 ≥ 1
2C1

(‖q‖0 + ‖s∗‖−1/2,Γg
)‖v‖1

≥ C(‖q‖0 + ‖s∗‖−1/2,Γg
)‖v‖1 = C‖(q, s∗)‖S×W∗ .

Here, positive constant C was taken so that 0 < C <
1

2C1
. � �

The existence of the solutions of the system (4.7) and (4.11) depends
on the following.

Lemma 4.3. ([8]) Let X and M be two Hilbert spaces. Let A(·, ·)
be a bounded bilinear form on X and B(·, ·) a bounded bilinear form
on X ×M. Define Z = {u ∈ X | B(u, q) = 0, for all q ∈ M}. Assume
that for some positive constants α and β

(4.15) A(z, z) ≥ α‖z‖2
X ∀z ∈ Z

and

(4.16) inf
0 6=q∈M

sup
0 6=u∈X

B(u, q)
‖u‖X‖q‖M

≥ β .

Then, for any given (f, ψ) ∈ (X ×M)∗, there exists a unique (u, p) ∈
X×M such that

(4.17) A(u, v) + B(v, p) =< f, v > ∀ v ∈ X

and

(4.18) B(u, q) =< ψ, q > ∀ q ∈ M .
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Theorem 4.4. Suppose b(·, ·) satisfy the div-stability condition.

Then, given (f̂ , ĝ) ∈ V∗×W, there exists unique solutions (û, p̂, t̂) and

(ûε, p̂ε, t̂ε) in V×S×W∗ of the systems (4.7) and (4.11), respectively.

Proof. Let F : V → S×W∗ be the bounded linear operator defined
by

(Fv, (q, s∗))S×W∗ = b(v, q)− < s∗, γgv >−1/2,Γg
.

Then, (4.11) can be rewritten by for all v ∈ V and (q, s∗) ∈ S ×W∗,

(4.19)
a(ûε,v) + (Fv, (p̂ε, t̂ε)) =< f̂ ,v >−1 ,

(F ûε, (q, s∗)) = ε(p̂, q)0− < s∗, ĝ >−1/2,Γg
.

Now, putting X = V, M = S ×W∗, A(·, ·) = a(·, ·) and B(v, (q, s∗))
into (Fv, (q, s∗)), then we may pose (4.19) into the same situation
with that of Lemma 4.3. Since V 3 v = 0 on Γ0, we can easily
verify that kerF ⊂ H1

0(Ω). Since
√
a(·, ·) over V is equivalent to

‖ · ‖1 by Korn’s Lemma, a(·, ·) is coercive over kerF . So, condition
(4.15) is satisfied. Condition (4.16) is also satisfied by Lemma 4.2.
Hence, combined with Lemma 4.2 with Lemma 4.3, (4.19) has a unique
solution (ûε, (p̂ε, t̂ε)) ∈ V × (S × W∗). Similarly, we can show that
(4.7) has also a unique solution (û, p̂, t̂). � �

The following estimates follow from the wellposedness of the systems
(4.11) and (4.7):

‖ûε‖1 + ‖p̂ε‖0 + ‖t̂ε‖−1/2,Γg
≤ C(‖f̂‖−1 + ‖ĝ‖1/2,Γg

) ,

‖û‖1 + ‖p̂‖0 + ‖t̂‖−1/2,Γg
≤ C(‖f̂‖−1 + ‖ĝ‖1/2,Γg

) .

In the penalized system corresponding to (4.7), Lagrange multipliers
may be employed to relax constraints of the incompressibility as well
as the inhomogeneous boundary condition. Let us concern with the
following saddle point problem:

inf
s∗∈W∗

sup
v∈V

E(v, s∗) ,
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where E : V ×W∗ → RI is a Lagrangian difined by

E(v, s∗) = 2ν
∫

Ω

D(v) :D(v) dΩ +
1
2ε

∫
Ω

(∇ · v)2 dΩ

−
∫

Ω

f · v dΩ−
∫

Γg

s∗ · (γgv − g) dΓ .

The coercivity of a(·, ·) and the condition (4.13) may guarantee the
existence and uniqueness of the saddle point of the quadratic form E.
The saddle point (uε, tε) of E satisfies

(4.20)

ν

∫
Ω

D(uε) :D(v) dΩ +
1
ε

∫
Ω

(∇ · uε)(∇ · v) dΩ

−
∫

Γg

tε · γgv dΓ =
∫

Ω

f · v dΩ ∀v ∈ V ,∫
Γg

s∗ · γguε dΓ =
∫

Γg

s∗ · g ∀s∗ ∈ W∗ .

Once the saddle point (uε, tε) of E is sought, the pressure can be re-

covered from pε = −1
ε
∇ · uε and the Lagrange multiplier is given by

tε = (−pεn + 2νD(uε) · n) on Γg. Hence the stress force plays the
role of a Lagrange multiplier enforcing the inhomogeneous boundary
condition.

We are now ready to show the existence and convergence of the
solutions for the penalized system.

Theorem 4.5. Let {(λ, (u(λ), λp(λ), λt(λ))) | λ =
1
ν
∈ Λ} be a

branch of regular solutions of (4.9). Then, there exists a neighborhood
O of the origin in V×S×W∗ and for ε ≤ ε0 small enough, a unique C2

branch {(λ, (uε(λ), λpε(λ), λtε(λ))) | λ ∈ Λ} of the penalized system
(1.1)–(1.3) such that uε(λ)− u(λ) ∈ O for all λ ∈ Λ. Moreover, there
exists a positive constant C, independent of ε and λ, such that

(4.21) ‖uε(λ)− u(λ)‖1,Ω + ‖pε(λ)− p(λ)‖0,Ω

+ ‖tε(λ)− t(λ)‖−1/2,Γg
≤ Cε ∀λ ∈ Λ .
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Proof. Let ψψψ = (u, p, t). We note that the first and second Fréchet
derivatives of G with respect to ψψψ yield

DψψψG(λ, (u, p, t)) · (v, q, s∗) = λ (((v · ∇)u + (u · ∇)v),0) ∈ Y

and

DψψψψψψG(λ, (u, p, t))·((v, q, s∗), (v̂, q̂, ŝ∗)) = λ (((v·∇)v̂+(v̂·∇)v),0) ∈ Y

for all (v, q, s∗), (v̂, q̂, ŝ∗) ∈ X . It is clear that G belongs to C2 and that
DψψψG and DψψψψψψG are bounded on all bounded subset of Λ×X by the
Sobolev embedding theorem. It should be noted that (v ·∇)u+(u·∇)v
belongs to L3/2(Ω) and is compactly embedded in V∗. Hence, the
condition (4.3) is satisfied. Since Z = L3/2(Ω) × {0} is compactly
embedded in Y = V∗ ×W, the condition (4.5) follows directly from
the condition (4.4). To verify the condition (4.4), we consider (4.7)
and (4.11). By Theorem 4.4, (4.7) has a unique solution (û, p̂, t̂) in
X = V × S ×W∗. By subtracting (4.7) from (4.11), we obtain

(4.22)

a(ûε − û,v) + b(v, p̂ε − p̂)− < t̂ε − t̂,v >−1/2,Γg
= 0 ∀v ∈ V ,

b(ûε − û, q) = ε (p̂ε − p̂, q)0 + ε(p̂, q)0 ∀q ∈ S ,
< s, ûε − û >−1/2,Γg

= 0 ∀s∗ ∈ W∗ .

Taking v in H1
0(Ω), the first equation of (4.22) is reduced to

(4.23) a(ûε − û,v) + b(v, p̂ε − p̂) = 0 ∀v ∈ H1
0(Ω) .

Since b(·, ·) satisfy the div-stability condition, (4.23) yields

1
C
‖p̂ε − p̂‖0 ≤ sup

0 6=v∈H1
0(Ω)

b(v, p̂ε − p̂)
‖v‖1

≤ ‖ûε − û‖1 ,

for some positive constant C and hence

(4.24) ‖p̂ε − p̂‖0 ≤ C‖ûε − û‖1 .
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By taking v = ûε − û and q = p̂ε − p̂ in (4.22) and (4.23), and by
substituting the second equation of (4.22) to (4.23), we derive

a(ûε − û, ûε − û) = −ε (p̂ε − p̂, p̂ε − p̂)0 − ε (p̂, p̂ε − p̂)0
≤ −ε (p̂, p̂ε − p̂)0 .

Therefore, combining (4.24) with Korn’s Lemma, we obtain

‖ûε − û‖1 ≤ Cε ‖p̂‖0 and ‖p̂ε − p̂‖0 ≤ C2ε ‖p̂‖0 .

Finally, the first equation of (4.22) yields

< t̂ε − t̂, γgv >−1/2,Γg
≤ ‖ûε − û‖1‖v‖1 + ‖∇ · v‖0‖p̂ε − p̂‖0

≤ (‖ûε − û‖1 + ‖p̂ε − p̂‖0)‖v‖1 ∀v ∈ V ,

whence from Lemma 2.1, we obtain

‖t̂ε − t̂‖−1/2,Γg
≤ ‖ûε − û‖1 + ‖p̂ε − p̂‖0 ≤ (C + C2)ε ‖p̂‖0 .

Therefore, we have shown that

lim
ε→0

‖(T ε − T )(f̂ , ĝ)‖X = 0 for all (f̂ , ĝ) ∈ V∗ ×W .

Hence, Theorem 4.5 immediately follows from Theorem 4.1. � �

Theorem 4.5 implies that regular solutions of the penalized system
converge to that of the primal system. Physically, the associated error
amounts to net fluid loss or gain caused by the penalization. Since the
solutions of Navier–Stokes equations are regular for almost all Reynolds
numbers, the solutions of the penalized Navier–Stokes system are lo-
cally unique.
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Navier–Stokes, Bull. Soc. Math. 96 (1968), 115–152.

10. R. Temam, Navier–Stokes equations: Theory and numerical analysis, North–

Holland, Amsterdam, 1984.
11. R. Temam, Navier–Stokes equations and nonlinear functional analysis, SIAM,

Philadelphia, PA., 1995.

Hongchul Kim
Department of Mathematics
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