ON QUASI-FUZZY H-CLOSED SPACE AND CONVERGENCE

YOON KYO-CHIL AND MYUNG JAE-DUEK

ABSTRACT. In this paper, we discuss quasi-fuzzy H-closed space and introduce θ -convergence of prefilter in fuzzy topological space. And we define θ -closed fuzzy set using by θ -convergence.

1. Preliminaries

Let X be a set and I be the closed unit interval. Then a function F from X into I is called a *fuzzy set* in X. For any fuzzy set F, $\{x \in X | F(x) > 0\}$ is called the *support* of F and denoted by supp F. i.e. $supp F = \{x \in X | F(x) > 0\}$. And for any $\alpha \in (0,1]$, a fuzzy set x_{α} in X is called a *fuzzy point* if its support is a singleton $\{x\}$ and its value is α on its support. That is,

$$x_{\alpha}(y) = \begin{cases} \alpha & \text{if } y = x \\ 0 & \text{if } y \neq x. \end{cases}$$

DEFINITION 1.1. Let X be a nonempty set and I be the closed unit interval. A family δ of functions from X into I is called a fuzzy topology on X if

- (1) $\phi, X \in \delta$
- (2) for all $U_i \in \delta$, $\cup U_i \in \delta$
- (3) if $U_1, U_2 \in \delta$, then $U_1 \cap U_2 \in \delta$.

The pair (X, δ) is called a fuzzy topological space. A member of δ is called an open set. And a fuzzy set F in X is said to be closed if $F^c = X - F$ is open in X, i.e. $F^c \in \delta$.

Received July 1, 1996.

¹⁹⁹¹ Mathematics Subject Classification: $54\mathrm{A}40.$

Key words and phrases: H-closed space, fuzzy topological space, θ -convergence.

DEFINITION 1.2. Let (X, δ) be a fuzzy topological space and $A \in I^X$. Let $\overline{A} = \cap \{F | F : \text{closed and } A \subset F\}$, which is called the *closure* of A. And $\overset{\circ}{A} = \cup \{U | U : \text{open and } U \subset A\}$, which is called the interior of A.

2. Quasi-fuzzy H-closed space

DEFINITION 2.1. Let (X, δ) be a fuzzy topological space. Then (X, δ) is said to be *quasi-fuzzy* H-closed if any open cover $\{U_{\lambda} | \lambda \in \Lambda\}$ of X has a finite subfamily $\{U_{\lambda_1}, U_{\lambda_2}, \cdots, U_{\lambda_n}\}$ such that $\bigcup_{i=1}^n \overline{U_{\lambda_i}} = X$.

PROPOSITION 2.2. A fuzzy topological space (X, δ) is quasi-fuzzy H-closed if and only if for every collection of fuzzy open sets $\{U_j\}_{j\in J}$ of X having the finite intersection property we have $\cap_{j\in J} \overline{U}_j \neq \phi$.

A fuzzy set F in (X, δ) is called regular closed if $F = \overline{F}$ and a fuzzy set U in (X, δ) is called regular open if $U = \overline{\overline{U}}$.

The following theorem shows that in the definition of quasi-fuzzy H-closedness we may work with fuzzy regular closed or fuzzy regular open sets.

THEOREM 2.3. In a fuzzy topological space (X, δ) the following conditions are equivalent.

- (1) (X, δ) is quasi-fuzzy H-closed space.
- (2) For every collection $\{F_j\}_{j\in J}$ of fuzzy regular closed sets such that $\bigcap_{j\in J} F_j = \phi$, there is a finite subfamily $\{F_1, F_2, \cdots, F_n\}$ such that $\bigcap_{j=1}^n \mathring{F}_j = \phi$.
- (3) $\bigcap_{j=1}^n \overline{U_j} \neq \phi$ holds for every collection of fuzzy regular open sets $\{U_j\}_{j\in J}$ with the finite intersection property.
- (4) Every fuzzy regular open cover of X contains a finite subcollection whose closures cover X.

3. θ -convergence in fuzzy topological space

DEFINITION 3.1. A non-empty subset $\mathcal{F} \subset I^X$ is called a prefilter

if

- (i) for all $A, B \in \mathcal{F}$ we have $A \cap B \in \mathcal{F}$,
- (ii) if $A \subset B$ and $A \in \mathcal{F}$, then $B \in \mathcal{F}$,
- (iii) $\phi \notin \mathcal{F}$.

In a fuzzy topological space, we have various concepts of prefilter convergence. In this paper we take the following convergence concept. A prefilter \mathcal{F} in (X, δ) converges to $x_{\alpha}(\mathcal{F} \longrightarrow x_{\alpha})$ if for any open set V containing x_{α} there exists $F \in \mathcal{F}$ with $F \subset V$ and \mathcal{F} accumulates to $x_{\alpha}(\mathcal{F} \propto x_{\alpha})$ if for each $F \in \mathcal{F}$ and for any open set V containing x_{α} , $F \cap V \neq \phi$.

DEFINITION 3.2. A non-empty subset $\mathfrak{S} \subset I^X$ is called a *base* for a prefilter if

- (i) for all $A, B \in \mathfrak{S}$ there is a $C \in \mathfrak{S}$ such that $C \subset A \cap B$,
- (ii) $\phi \notin \mathfrak{S}$.

The prefilter \mathcal{F} generated by \mathfrak{S} is defined as

$$\mathcal{F} = \{ F \in I^X | \exists B \in \mathfrak{S} \, s.t.B \subset F \}$$

and is denoted by $[\mathfrak{S}]$. A subset \mathfrak{S} of \mathcal{F} is a base for \mathcal{F} if and only if for all $F \in \mathcal{F}$ there is a $B \in \mathfrak{S}$ such that $B \subset F$.

DEFINITION 3.3. A prefilter \mathcal{F} in a fuzzy topological space (X, δ) θ -converges to $x_{\alpha}(\mathcal{F} \xrightarrow{\theta} x_{\alpha})$ if for any open set V containing x_{α} there exists $F \in \mathcal{F}$ such that $F \subset \overline{V}$.

DEFINITION 3.4. The prefilter \mathcal{F} in a fuzzy topological space (X, δ) θ -accumulates to x_{α} $(\mathcal{F} \underset{\theta}{\propto} x_{\alpha})$ if for each $F \in \mathcal{F}$ and any open set V containing x_{α} , $F \cap \overline{V} \neq \phi$.

Let \mathcal{F} be a prefilter in (X, δ) . If $\mathcal{F} \longrightarrow x_{\alpha}$ (or $\mathcal{F} \propto x_{\alpha}$), then $\mathcal{F} \xrightarrow{\theta} x_{\alpha}$ (or $\mathcal{F} \propto x_{\alpha}$). However the converse does not hold.

PROPOSITION 3.5. Let \mathcal{F} be a prefilter in (X, δ) . If $\mathcal{F} \xrightarrow[\theta]{} x_{\alpha}$, then $\mathcal{F} \underset{\theta}{\propto} x_{\alpha}$.

A prefilter \mathcal{M} on X is called a maximal prefilter if it is not properly contained in any other prefilter on X.

LEMMA 3.6. If X is a set and \mathcal{F} a prefilter on X, then \mathcal{F} is a maximal prefilter if and only if $A \in \mathcal{F}$ or $A^c \in \mathcal{F}$ for any fuzzy set in X.

PROPOSITION 3.7. Let \mathcal{M} be a maximal prefilter in (X, δ) . Then $\mathcal{M} \underset{\theta}{\propto} x_{\alpha}$ if and only if $\mathcal{M} \xrightarrow{\theta} x_{\alpha}$.

Proof. (\Leftarrow) Obvious.

 (\Rightarrow) For any open set V containing x_{α} , since \mathcal{M} is a maximal prefilter, $\overline{V} \in \mathcal{M}$ or $X - \overline{V} \in \mathcal{M}$. Thus there is $M \in \mathcal{M}$ such that $M \subset \overline{V}$ or $M \subset X - \overline{V}$. Since $\mathcal{M} \underset{\theta}{\propto} x_{\alpha}$, for any $M \in \mathcal{M}$, $M \cap \overline{V} \neq \phi$. Thus $M \subset X - \overline{V}$ is impossible. Therefore $M \subset \overline{V}$ for all open set V containing x_{α} . Hence $\mathcal{M} \xrightarrow{\theta} x_{\alpha}$.

DEFINITION 3.8. A fuzzy point x_{α} in a fuzzy topological space (X, δ) is in the θ -closure of a fuzzy set K in X $(\theta - \overline{K})$ if for any open set V containing x_{α} , $\overline{V} \cap K \neq \phi$.

DEFINITION 3.9. A fuzzy set K in (X, δ) is θ -closed if it contains its θ -closure (i.e. θ - $\overline{K} \subset K$).

THEOREM 3.10. A fuzzy point x_{α} in (X, δ) is in the θ -closure of a fuzzy set K if and only if there is a prefilter \mathcal{F} in K which θ -converges to x_{α} .

Proof. (\Rightarrow) Let $\mathcal{F} = \{\overline{V} \cap K | V \text{ is an open set containing } x_{\alpha}\}$. Since $\overline{V} \cap K \neq \phi$, \mathcal{F} is a prefilter in K and obviously $\mathcal{F} \xrightarrow{\theta} x_{\alpha}$.

 (\Leftarrow) Let \mathcal{F} be a prefilter in K such that $\mathcal{F} \xrightarrow{\theta} x_{\alpha}$. Then for any open set V containing x_{α} , there is an $F \in \mathcal{F}$ such that $F \subset \overline{V}$. So $F \cap \overline{V} \neq \phi$. Thus $K \cap \overline{V} \neq \phi$. Hence $x_{\alpha} \in \theta$ - \overline{K} .

THEOREM 3.11. In any fuzzy topological space (X, δ) ,

- (1) ϕ and X are θ -closed.
- (2) Arbitrary intersections and finite unions of θ -closed sets are θ -closed.

Proof. (1) Clear.

(2) Let $\{K_{\lambda} | \lambda \in \Lambda\}$ be the class of θ -closed sets. First, let $K = \bigcap_{\lambda} K_{\lambda}$. If $x_{\alpha} \in \theta - \overline{K}$, for any open set V containing x_{α} , $\overline{V} \cap K = \overline{V} \cap (\cap_{\lambda} K_{\lambda}) = \bigcap_{\lambda} (\overline{V} \cap K_{\lambda}) \neq \phi$. Thus $\overline{V} \cap K_{\lambda} \neq \phi$ for all $\lambda \in \Lambda$. Hence $x_{\alpha} \in \theta - \overline{K}_{\lambda} \subset K_{\lambda}$ for all $\lambda \in \Lambda$. Therefore $x_{\alpha} \in \bigcap_{\lambda} K_{\lambda} = K$. So $\theta - \overline{K} \subset K$. Hence K is a θ -closed set.

Secondly, let K_1 and K_2 be θ -closed, and $x_{\alpha} \notin K_1 \cup K_2$. then $x_{\alpha} \notin K_1, x_{\alpha} \notin K_2$. Since $x_{\alpha} \notin K_1$ and K_1 is θ -closed, there is an open set U containing x_{α} such that $\overline{U} \cap K_1 = \phi$. Similarly there is an open set V containing x_{α} such that $\overline{V} \cap K_2 = \phi$. Let $W = U \cap V$ then $x_{\alpha} \in W$ and W is open. And $\overline{W} = \overline{U} \cap \overline{V} \subset \overline{U} \cap \overline{V}$. Hence $\overline{W} \cap (K_1 \cup K_2) = \phi$. Thus x_{α} is not a θ -closure point of $K_1 \cup K_2$. Therefore $\theta \cdot \overline{K_1} \cup \overline{K_2} \subset K_1 \cup K_2$. Hence $K_1 \cup K_2$ is θ -closed. By induction, the claim holds.

THEOREM 3.12. Let (X, δ) be a fuzzy topological space. If (X, δ) is quasi-fuzzy H-closed, then every prefilter \mathcal{F} is θ -accumulate to some fuzzy point x_{α} .

Proof. Suppose that there is a prefilter \mathcal{F} on X that does not θ -accumulate to every fuzzy point x_{α} . Then there are an open set V containing x_{α} and $F \in \mathcal{F}$ such that $F \cap \overline{V} = \phi$. Consider a fuzzy point x_1 for each $x \in X$. Then $\bigcup_{x \in X} \{V \mid x_1 \in V \in \delta\} = X$. Since X is quasifuzzy H-closed, there is a finite subfamily $\{V_i \mid i = 1, 2 \cdots n\}$ such that $\bigcup_{i=1}^n \overline{V_i} = X$. Let F_i be a member in \mathcal{F} corresponding $V_i (1 \leq i \leq n)$. Then $F_i \cap \overline{V_i} = \phi$. Since \mathcal{F} is a prefilter, there exists $F \in \mathcal{F}$ such that $F \subset \bigcup_{i=1}^n F_i$. Since $F \neq \phi$, there is $x \in X$ such that $F(x) + (\bigcup_{i=1}^n \overline{V_i})(x) > 1$. Hence $F \cap (\bigcup_{i=1}^n \overline{V_i}) \neq \phi$. Hence $F \cap \overline{V_i} \neq \phi$ for some i, which is contradiction. \square

References

- 1. C.L. Chang, Fuzzy topological spaces, J. of Math. Analysis and Applications 24, 182-190.
- A.K. Katsaras, Convergence of Fuzzy Filters In Fuzzy Topological Spaces, Bull. Math.de la Soc. Sci. Math. de la R.S. de Roumanie Tome 27 (75) No.2, 131-137.

- 3. R. Lowen, Fuzzy Topological Spaces and Fuzzy Compactness, J. of Math. Analysis and Applications **56**, 621-633.
- 4. R. Lowen, Convergence in Fuzzy Topological Spaces, General Topology and its Applications 10, 147-160.
- 5. K.C. Min, Fuzzy Limit Spaces, Fuzzy Sets and Systems 32, 343-357.
- 6. M.A. De Prade Vicente, *Fuzzy Filters*, J. of Math. Analysis and Applications **129**, 560-568.
- 7. P.M. Pu and Y.M. Liu, Fuzzy Topology I. Neighborhood Structure of a Fuzzy Point and Moore-Smith Convergence, J. of Math. Analysis and Applications 76, 571-599.
- 8. K.C. Yoon, Fuzzy H-closed spaces and extensions, Thesis, Yonsei University, 1995.

Department of Mathematics Yonsei University Seoul 120-749, Korea

Department of Mathematics Kyunghee University Suwon 440-701, Korea