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CONFORMAL CHANGE OF THE TENSOR Sλµ
ν FOR

THE SECOND CATEGORY IN 6-DIMENSIONAL g-UFT

Chung Hyun Cho

Abstract. We investigate change of the torsion tensor induced by
the conformal change in 6-dimensional g-unified field theory. These

topics will be studied for the second class with the second category
in 6-dimensional case.

1. Introduction

The conformal change in a generalized 4-dimensional Riemannian
space connected by an Einstein’s connection was primarily studied
by HLAVATÝ([8],1957). CHUNG([6],1968) also investigated the same
topic in 4-dimensional ∗g-unified field theory.

The Einstein’s connection induced by the conformal change for all
classes in 3-dimensional case, for the second and third classes in 5-
dimensional case, and for the first class in 5-dimensional case, and
for the second class with the first category in 6-dimensional case were
investigated by CHO([1],1992, [2],1994, [3],1995).

In the present paper, we investigate change of the torsion tensor
Sωµ

ν induced by the conformal change in 6-dimensional g-unified field
theory. These topics will be studied for the second class with the second
category in 6-dimensional case.

2. Preliminaries

This chapter is a brief collection of basic concepts, notations, theo-
rems, and results needed in our further considerations. They may be
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reffered to CHUNG([4],1982;[3],1988), CHO([1],1992;[2],1994;[3],1995).

2.1. n-dimensional g-unified field theory
The n-dimensional g-unified field theory (n-g-UFT hereafter) was

originally suggested by HLAVATÝ([8],1957) and systematically intro-
duced by CHUNG([7],1963).

Let Xn
1 be an n-dimensional generalized Riemannian manifold, ref-

fered to a real coordinate system xν obeying coordinate transforma-
tions xν → xν′

, for which

(2.1) Det
((

∂x

∂x′

))
6= 0.

In the usual Einstein’s n-dimensional unified field theory, the manifold
Xn is endowed with a general real nonsymmetric tensor gλµ which may
be split into its symmetric part hλµ and skew-symmetric part kλµ

2 :

(2.2) gλµ = hλµ + kλµ

where

(2.3) Det((gλµ)) 6= 0 Det((hλµ)) 6= 0.

Therefore we may define a unique tensor hλν = hνλ by

(2.4) hλµhλν = δν
µ.

In our n-g-UFT, the tensors hλµ and hλν will serve for raising and/or
lowering indices of the tensors in Xn in the usual manner.

The manifold Xn is connected by a general real connection Γν
ωµ with

the following transformation rule :

(2.5) Γν′

ω′µ′ =
∂xν′

∂xα

(
∂xβ

∂xω′ ·
∂xγ

∂xµ′ Γ
α
βγ +

∂2xα

∂xω′∂xµ′

)
1Throughout the present paper, we assumed that n ≥ 2.
2Throughout this paper, Greek indices are used for holonomic components of

tensors. In Xn all indices take the values 1, · · · , n and follow the summation

convention.



Conformal change of the tensor Sλµ
ν 165

and satisfies the system of Einstein’s equations

(2.6) Dωgλµ = 2Sωµ
αgλα

where Dω denotes the covariant derivative with respect to Γν
λµ and

(2.7) Sλµ
ν = Γν

[λµ]

is the torsion tensor of Γν
λµ. The connection Γν

λµ satisfying (2.6) is
called the Einstein’s connection.

In our further considerations, the following scalars, tensors, abbre-
viations, and notations for p = 0, 1, 2, · · · are frequently used :

(2.8)a
g = Det((gλµ)) 6= 0, h = Det((hλµ)) 6= 0,

t = Det((kλµ)),

(2.8)b g =
g

h
, k =

t

h
,

(2.8)c Kp = k[α1
α1
· · · kαp]

αp , (p = 0, 1, 2, · · · )

(2.8)d (0)kλ
ν = δν

λ, (1)kλ
ν = kλ

ν , (p)kλ
ν = (p−1)kλ

αkα
ν ,

(2.8)e Kωµν = ∇νkωµ +∇ωkνµ +∇µkων ,

(2.8)f σ =
{

1 if n is odd
0 if n is even

.

where ∇ω is the symbolic vector of the convariant derivative with re-
spect to the Christoffel symbols

{
ν

λµ

}
defined by hλµ. The scalars and

vectors introduced in (2.8) satisfy

(2.9)a K0 = 1; Kn = k if n is even; Kp = 0 if p is odd,
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(2.9)b g = 1 + K2 + · · ·+ Kn−σ,

(2.9)c (p)kλµ = (−1)p(p)kµλ, (p)kλν = (−1)p(p)kνλ.

Furthermore, we also use the following useful abbrevations, denoting
an arbitrary tensor Tωµν , skew-symmetric in the first two indices, by
T :

(2.10)a
pqr

T =
pqr

T ωµν = Tαβγ
(p)kω

α(q)kµ
β(r)kν

γ ,

(2.10)b T = Tωµν =
000

T ,

(2.10)c 2
pqr

T ω[λµ] =
pqr

T ωλµ −
pqr

T ωµλ,

(2.10)d 2
(pq)r

T ωλµ =
pqr

T ωλµ +
qpr

T ωλµ.

We then have

(2.11)
pqr

T ωλµ = −
qpr

T λωµ.

If the system (2.6) admits Γν
λµ, using the above abbreviations it was

shown that the connection is of the form

(2.12) Γν
ωµ =

{
ν

ωµ

}
+ Sωµ

ν + Uν
ωµ

where

(2.13) Uνωµ =
100

S (ωµ)ν +
(10)0

S ν(ωµ).

The above two relations show that our problem of determining Γν
ωµ in

terms of gλµ is reduced to that of studying the tensor Sωµ
ν . On the

other hand, it has also been shown that the tensor Sωµ
ν satisfies

(2.14) S = B − 3
(110)

S

where

(2.15) 2Bωµν = Kωµν + 3Kα[µβkω]
αkν

β .
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2.2. Some results for the second class with the second cat-
egory in 6-g-UFT

In this section, we introduce some results of 6-g-UFT without proof,
which are needed in our subsequent considerations.

They may be referred to CHO([4],1993).

Definition 2.1. In 6-g-UFT, the tensor gλµ(kλµ) is said to be the
second class with the second category, if K4 6= 0, K6 = 0.

Theorem 2.2. (Main recurrence relations) For the second class
with the second category in 6-UFT, the following recurrence relation
hold

(2.16) (p+4)kλ
ν = −K2

(p+2)kλ
ν −K4

(p)kλ
ν , (p = 0, 1, 2, · · · ).

Theorem 2.3. (For the second class with the second category in
6-g-UFT). A necessary and sufficient condition for the existence and
uniqueness of the solution of (2.5) is

(2.17)
(1 + K2 + K4)(1−K2 + K4)(1−K4)(1− 3K2 + 9K4)×

× [(1−K2 − 3K4)2 − 4K4((K2)2 − 4K4)] 6= 0.

If the condition (2.17) is satisfied, the unique solution of (2.14) is given
by
(2.18)

(S −B)(1 + K2 + K4)[(1−K2 + 5K4)2 − 4K4(2−K2)2]

=4B
1
(K4 − 1) + B

2
(1−K2 + 5K4) + 2B

3
(1− 2K2 + (K2)2 − 5K4)

where

B
1

=(K4)2B + 2
(12)3

B + K2K4

002

B + (2K4 − (K2)2)
112

B −

− 2K4

(12)1

B + K4(2 + 2K2 + (K2)2)
110

B + K2

222

B +

+ 2K4

(20)2

B − 2K4(1 + K2)
(10)3

B −K4(1 + K2)
220

B −

− 2K4(1 + K2)2
(10)1

B
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B
2

=− (K4)2B + 2((K2)2 − 1 + K4 + 2K2K4)
(10)1

B + (2 + K2)
112

B −

−
222

B −K4

002

B + 2
(20)2

B + 2(K2 + 2K4)
(10)3

B + 2K4

(20)0

B −

− ((K2)2 − 1 + K4 + 2K2K4)
110

B + (K2 − 1 + 2K4)
220

B

B
3

=2(K4)2B + 2
(12)3

B −K4

002

B + K2

112

B + 2(1 + K2)
(21)1

B −

−
222

B + 2K4

(10)3

B − (1 + K4)(1 + K2)
110

B + (1 + K4)
220

B +

+ 2K4(1 + K2)
(10)1

B − 2K4

(20)0

B .

3. Conformal change of the 6-dimensional torsion tensor
for the second class with the second category

In this final chapter we investigate the change Sλµ
ν → Sλµ

ν of
the torsion tensor induced by the conformal change of the tensor gλµ,
using the recurrence relations and theorems introduced in the preceding
chapter.

We say that Xn and Xn are conformal if and only if

(3.1) gλµ(x) = eΩgλµ(x)

where Ω = Ω(x) is an at least twice differentiable function. This con-
formal change enforces a change of the torsion tensor Sλµ

ν . An explicit
representation of the change of 6-dimensional torsion tensor Sλµ

ν for
the second class with the second category will be exhibited in this
chapter.

Agreement 3.1. Throughout this section, we agree that, if T is
a function of gλµ, then we denote T the same function of gλµ. In
particular, if T is a tensor, so is T . Furthermore, the indices of T (T )
will be raised and/or lowered by means of hλν(h

λν
) and/or hλµ(hλµ).

The results in the following theorems are needed in our further con-
siderations. They may be referred to CHO([1],1992, [2],1994, [3],1995).
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Theorem 3.2. In n-g-UFT, the conformal change (3.1) induces the
following changes :

(3.2)a
(p)kλµ = eΩ(p)kλµ, (p)kλ

ν = (p)kλ
ν ,

(p)k
λν

= e−Ω(p)kλν

(3.2)b g = g, Kp = Kp, (p = 1, 2, · · · ).

Theorem 3.3. (For all classes in 6-g-UFT). The change of the
tensor Bωµν induced by the conformal change (3.1) may be given by

(3.3)
Bωµν =eΩ(Bωµν + kν[ωΩµ] − kωµΩν

− hν[ωkµ]
δΩδ + 2(2)kν[ωkµ]

δΩδ + kωµ
(2)kν

δΩδ).

Now, we are ready to derive representations of the changes Sωµ
ν →

Sωµ
ν in 6-g-UFT for the second class with the second category induced

by the conformal change (3.1).

Theorem 3.4. The conformal change (3.1) induces the following
change :

(3.4) 2
(10)1

B ωµν =eΩ[2
(10)1

B ωµν + (−2(4)kν[ωkµ]
δ

+ 2(2)kν[ωkµ]
δ − kν[ω

(2)kµ]
δ)Ωδ − (3)kν[ωΩµ]].

Theorem 3.5. The conformal change (3.1) induces the following
change :

(3.5)

ppq

B ωµν =eΩ[
ppq

B ωµν + (−1)p{2(p+q+2)kν[ω
(p+1)kµ]

δ

+ (2p+1)kωµ
(2+q)kν

δ − (2p+1)kωµ
(q)kν

δ

+ (p+q+1)kν[ω
(p)kµ]

δ − (p+q)kν[ω
(p+1)kµ]

δ}Ωδ].(
p = 0, 1, 2, 3, 4, · · ·
q = 0, 1, 2, 3, 4, · · ·

)
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Theorem 3.6. The change Sωµ
ν → Sωµ

ν induced by conformal
change (3.1) may be represented by

(3.6)

Sωµ
ν =Sωµ

ν +
1
C

[a1kωµΩν + a2k
ν
[ωΩµ]

+ a3h
ν
[ωkµ]

δΩδ + a4δ
ν
[ωkµ]

+ a5k
ν
[ω

(2)kµ]
δΩδ + a6

(2)kν
[ωkµ]

δΩδ

+ a7kωµ
(2)kνδΩδ + a8

(3)kωµΩν

+ a9
(3)kν

[ωΩµ] + a10δ
ν
[ω

(3)kµ]
δΩδ

+ 2a11
(3)kν

[ω
(2)kµ]

δΩδ + 2a12
(2)kν

[ω
(3)kµ]

δΩδ

+ a13
(3)kωµ

(2)kνδΩδ],

where

a1 =α2β(1 + 4β)− 2αβ(1 + β + 2β2) + β(1− 13β2)− C,

a2 =2α3β − α2β(α− 2β) + 2αβ2(1− 2β) + β2(3β − 4) + C,

a3 =β2(2α2 − 5α− 9β + 7)− C,

a4 =− 2α3β + α2β(1 + 12β)− 9αβ2 − β(3 + 5β + 18β2),

a5 =2α4 − α3(2β + 3)− α2(1 + 9β + 4β2)

+ α(2− 10β − β2 + 8β3) + β(6 + 13β + 19β2),

a6 =− 2α4 + α3(1 + 18β) + 2α2β(1− 8β)− α(2 + 16β

+ 59β2 + 8β3) + β(27β2 − 58β − 10)− 1 + 2C,

a7 =− α2β(1 + 4β) + 2αβ(1 + β) + β(13β2 + 4αβ2 − 1) + C,

a8 =3α3 + α2(5β + 8β2 − 4)− α(2 + 36β + 5β2)

+ 7β(2− 6β − 3β2) + 3,

a9 =α2(1− 8β)− 2α(1− 6β2) + β(8β2 + 35β − 12) + 1,

a10 =2α2β(−5 + 2β) + 2αβ(3− 6β + 4β2) + 4β(1 + 2β − 2β2),

a11 =2α4 − α3(1 + 3β)− 4α2β2 + α(1 + 7β + 4β2)

− β(3− 7α− 4αβ)− 2,

a12 =2α4 + α3(2β − 15) + α2(22− 19β + 4β2)

+ α(−8 + 35β − 6β2)− 3β + 1,
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a13 =− 4α4 − α3(1− 8β) + 11α2β − α(8− 16β + 21β2)

+ β(5β2 + 2β − 10)− 3,

where α = K2, β = K4,

(3.7) C = (1 + α + β)[(1− α + 5β)2 − 4β(2− α)2].

Proof. In virtue of (2.18) and Agreement (3.1), we have
(3.8)

(S −B)(1 + K2 + K4)× [(1−K2 + 5K4)2 − 4K4(2−K2)2]

=4B
1
(K4 − 1) + B

2
(1−K2 + 5K4) + 2B

3
(1− 2K2 + (K2)2 − 5K4).

The relation (3.6) follows by substituting (3.2), (3.3), (3.4), (3.5),
(2.16), (3.7) into (3.8). � �
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