A STUDY ON THE SCHUR ALGEBRA OF SIZE 4

Young Kwon Song

Abstract

In this paper, we will show that the minimal number of generators of any four dimensional, faithful, \mathcal{B} (Schur algebra of size 4)-module is two. This result can be applied to classify the isomorphism classes of the class $\left\{\mathcal{B} \ltimes N^{2} \mid N\right.$ is a faithful, \mathcal{B}-module with $\left.\operatorname{dim}_{k}(N)=4\right\}$.

1. Introduction

In this paper, k will denote an arbitrary field. Throughout this paper, we will denote the Schur algebra of size 4 by \mathcal{B}. Thus,

$$
\mathcal{B}=\left\{\left.\left(\begin{array}{cccc}
x & 0 & a & b \\
0 & x & c & d \\
0 & 0 & x & 0 \\
0 & 0 & 0 & x
\end{array}\right) \right\rvert\, x, a, b, c, d \in k\right\} .
$$

Recall that a commutative k-algebra R is a (B, N)-construction if R is k-algebra isomorphic to $B \ltimes N^{\ell}$, the idealization of a B-module N, for some finite dimensional, commutative, local, k-algebra B and finitely generated, faithful, B-module N and natural number ℓ.

In [1], W.C.Brown and F.W.Call showed that the Courter's algebra \mathcal{C} is a (B, N)-construction, where B is the Schur algebra of size 4 , $N=k^{4}$, and $\ell=2$. That is, $\mathcal{C} \cong \mathcal{B} \ltimes\left(k^{4}\right)^{2}$. But, as we will see in the next section, there are at least two nonisomorphic \mathcal{B}-modules. Thus, it is very natural to be asked how many isomorphism classes can be constructed by varying the faithful, \mathcal{B}-module N.

Let $M \mathcal{B}(4)=\left\{N \mid N\right.$ is a faithful, \mathcal{B}-module and $\left.\operatorname{dim}_{k}(N)=4\right\}$. Then, we will show the minimal number of generators of N in $M \mathcal{B}(4)$

Received May 14, 1996.
1991 Mathematics Subject Classification: 13C05.
Key words and phrases: module, minimal number of generators.
is two. This can be a fundamental building block to classify the isomorphism classes of the class $\left\{R \mid R\right.$ is a k-algebra and $R \cong \mathcal{B} \ltimes N^{2}$ for some $N \in M \mathcal{B}(4)\}$.

2. Classification of $M \mathcal{B}(4)$

We will first show the set $M \mathcal{B}(4)$ has at least two isomorphism classes. To see this, we first need a \mathcal{B}-module presentation of k^{4}. We will denote the i, j-th matrix unit of $M_{4 \times 4}(k)$ by $E_{i j}$. Notice that $E_{i j} \in \mathcal{B}$ if $i=1,2, j=3,4$.

Lemma 2.1. Let

$$
A=\left(\begin{array}{cccccc}
E_{23} & E_{24} & E_{13} & E_{14} & O & O \tag{1}\\
-E_{13} & -E_{14} & O & O & E_{23} & E_{24}
\end{array}\right) \in M_{2 \times 6}(\mathcal{B}) .
$$

Then, $\mathcal{B}^{2} / C S(A) \in M \mathcal{B}(4)$.
Proof. Obviously, $\mathcal{B}^{2} / C S(A)$ is a finitely generated, \mathcal{B}-module. Since $\operatorname{dim}_{k}\left(\mathcal{B}^{2}\right)=10$ and $\operatorname{dim}_{k}(C S(A))=6, \operatorname{dim}_{k}\left(\mathcal{B}^{2} / C S(A)\right)=4$. Suppose $r \in A n n_{\mathcal{B}}\left(\mathcal{B}^{2} / C S(A)\right)$. Then, $r\binom{I_{4}}{O}, r\binom{O}{I_{4}} \in C S(A)$. Thus, $\binom{r}{O},\binom{O}{r} \in C S(A)$ which implies that for some $x_{i}, y_{j} \in \mathcal{B}$, $1 \leq i, j \leq 6$

$$
\begin{align*}
& r=x_{1} E_{23}+x_{2} E_{24}+x_{3} E_{13}+x_{4} E_{14} \\
& 0=-x_{1} E_{13}-x_{2} E_{14}+x_{5} E_{23}+x_{6} E_{24} \\
& 0=y_{1} E_{23}+y_{2} E_{24}+y_{3} E_{13}+y_{4} E_{14} \tag{2}\\
& r=-y_{1} E_{13}-y_{2} E_{14}+y_{5} E_{23}+y_{6} E_{24}
\end{align*}
$$

Since $J(\mathcal{B})^{2}=(0)$, we can assume $x_{i}, y_{j} \in k=k I_{4}$ for $1 \leq i, j \leq 6$. The second and third equations in (2) imply $x_{1}, x_{2}, x_{5}, x_{6}, y_{1}, y_{2}, y_{3}, y_{4}$ are all zero. Thus, $r=x_{3} E_{13}+x_{4} E_{14}=y_{5} E_{23}+y_{6} E_{24}$. Therefore, $r=0$. Hence, $A n n_{\mathcal{B}}\left(\mathcal{B}^{2} / C S(A)\right)=(0)$ and $\mathcal{B}^{2} / C S(A)$ is a faithful, \mathcal{B}-module.

Lemma 2.2. Let A be the matrix in Equation (1). Then $\mathcal{B}^{2} / C S(A)$ is \mathcal{B}-module isomorphic to k^{4}.

Proof. Let $f: \mathcal{B}^{2} \longrightarrow k^{4}$ be the map defined by $f\binom{x}{y}=\varepsilon_{2} x+\varepsilon_{1} y$. Here, $\varepsilon_{1}=(1,0,0,0)$ and $\varepsilon_{2}=(0,1,0,0)$. Then, f is a surjective, \mathcal{B} module homomorphism. If $\binom{z}{w} \in \operatorname{ker} f$, then $z=a_{1} I_{4}+a_{2} E_{13}+$ $a_{3} E_{14}+a_{4} E_{23}+a_{5} E_{24}$ and $w=b_{1} I_{4}+b_{2} E_{13}+b_{3} E_{14}+b_{4} E_{23}+b_{5} E_{24}$ for some $a_{i}, b_{i} \in k, i=1, \ldots, 5$. Since $f\binom{z}{w}=\varepsilon_{2} z+\varepsilon_{1} w=0, a_{1}=$ $b_{1}=0, b_{2}=-a_{4}$, and $b_{3}=-a_{5}$.

Thus,

$$
\begin{aligned}
\binom{z}{w} & =a_{2}\binom{E_{13}}{O}+a_{3}\binom{E_{14}}{O}+a_{4}\binom{E_{23}}{-E_{13}} \\
& +a_{5}\binom{E_{24}}{-E_{14}}+b_{4}\binom{O}{E_{23}}+b_{5}\binom{O}{E_{24}} .
\end{aligned}
$$

Hence, $\binom{z}{w} \in C S(A)$. It is easy to check that $C S(A) \subseteq \operatorname{kerf}$. Therefore, $C S(A)=\operatorname{ker} f$. Hence, $\mathcal{B}^{2} / C S(A) \cong k^{4}$ as \mathcal{B}-modules.

We can now construct a faithful, \mathcal{B}-module of dimension 4 which is not isomorphic to k^{4} as \mathcal{B}-modules.

Theorem 2.3:. Let

$$
C=\left(\begin{array}{cccccc}
E_{13} & E_{14} & E_{23} & E_{24} & O & O \tag{3}\\
E_{24} & E_{23} & O & O & E_{13} & E_{14}
\end{array}\right) \in M_{2 \times 6}(\mathcal{B}) .
$$

Then, $\mathcal{B}^{2} / C S(C) \in M \mathcal{B}(4)$ and $\mathcal{B}^{2} / C S(C)$ is not \mathcal{B}-module isomorphic to k^{4}.

Proof. Obviously, $\mathcal{B}^{2} / C S(C)$ is a finitely generated, \mathcal{B}-module. Since $\operatorname{dim}_{k}\left(\mathcal{B}^{2}\right)=10$ and $\operatorname{dim}_{k}(C S(C))=6, \operatorname{dim}_{k}\left(\mathcal{B}^{2} / C S(C)\right)=4$.
Suppose $r \in \operatorname{Ann}_{\mathcal{B}}\left(\mathcal{B}^{2} / C S(C)\right)$. Then, $\binom{r}{O},\binom{O}{r} \in C S(C)$ which
implies that for some $x_{i}, y_{j} \in \mathcal{B}, 1 \leq i, j \leq 6$

$$
\begin{align*}
& r=x_{1} E_{13}+x_{2} E_{14}+x_{3} E_{23}+x_{4} E_{24} \\
& 0=x_{1} E_{24}+x_{2} E_{23}+x_{5} E_{13}+x_{6} E_{14} \\
& 0=y_{1} E_{13}+y_{2} E_{14}+y_{3} E_{23}+y_{4} E_{24} \tag{4}\\
& r=y_{1} E_{24}+y_{2} E_{23}+y_{5} E_{13}+y_{6} E_{14}
\end{align*}
$$

Since $J(\mathcal{B})^{2}=(0)$, we can assume $x_{i}, y_{j} \in k=k I_{4}$ for $1 \leq i, j \leq 6$. The second and third equations in (4) imply $x_{1}, x_{2}, x_{5}, x_{6}, y_{1}, y_{2}, y_{3}, y_{4}$ are all zero. Thus, $r=x_{3} E_{23}+x_{4} E_{24}=y_{5} E_{13}+y_{6} E_{14}$. Therefore, $r=0$. Hence, $A n n_{\mathcal{B}}\left(\mathcal{B}^{2} / C S(C)\right)=(0)$ and $\mathcal{B}^{2} / C S(C) \in M \mathcal{B}(4)$.

Suppose $\mathcal{B}^{2} / C S(C)$ is \mathcal{B}-module isomorphic to k^{4}. Then, there exists a \mathcal{B}-module isomorphism $g: \mathcal{B}^{2} / C S(C) \longrightarrow k^{4}$. Let $\beta_{1}=$ $\binom{I_{4}}{O}^{-}=\binom{I_{4}}{O}+C S(C) \in \mathcal{B}^{2} / C S(C)$. and $\beta_{2}=\binom{O}{I_{4}}^{-}$. Then, $\mathcal{B}^{2} / C S(C)=\beta_{1} \mathcal{B}+\beta_{2} \mathcal{B}$. Since $k^{4}=\varepsilon_{1} \mathcal{B}+\varepsilon_{2} \mathcal{B}, g\left(\beta_{1}\right)=\varepsilon_{1} x_{1}+\varepsilon_{2} y_{1}$ and $g\left(\beta_{2}\right)=\varepsilon_{1} x_{2}+\varepsilon_{2} y_{2}$ for some $x_{i}, y_{i} \in \mathcal{B}, i=1,2$. Notice that x_{1} or y_{1} is unit. To see this, suppose $x_{1}, y_{1} \in J(\mathcal{B})$. Then, $g\left(\beta_{1}\right)=\varepsilon_{1} x_{1}+\varepsilon_{2} y_{1} \in k^{4} J(\mathcal{B})$. The inclusions

$$
k^{4}=g\left(\beta_{1}\right) \mathcal{B}+g\left(\beta_{2}\right) \mathcal{B} \subseteq k^{4} J(\mathcal{B})+g\left(\beta_{2}\right) J(\mathcal{B}) \subseteq k^{4}
$$

imply that $k^{4}=k^{4} J(\mathcal{B})+g\left(\beta_{2}\right) J(\mathcal{B})$. By Nakayama's Lemma, $k^{4}=$ $g\left(\beta_{2}\right) J(\mathcal{B})$. This implies \mathcal{B} is isomorphic to k^{4} as \mathcal{B}-modules and hence $\operatorname{dim}_{k}(\mathcal{B})=4$. Since $\operatorname{dim}_{k}(\mathcal{B})=5$, this is impossible. Hence, x_{1} or y_{1} is unit in \mathcal{B}. Similarly, x_{2} or y_{2} is unit.

Let A be the matrix given in Equation (1) and let f be the \mathcal{B}-module homomorphism given in the proof of Lemma 2.2. If $\binom{z}{w} \in C S(C)$, then

$$
\begin{aligned}
f\binom{y_{1} z+y_{2} w}{x_{1} z+x_{2} w} & =\varepsilon_{1}\left(x_{1} z+x_{2} w\right)+\varepsilon_{2}\left(y_{1} z+y_{2} w\right) \\
& =\left(\varepsilon_{1} x_{1}+\varepsilon_{2} y_{1}\right) z+\left(\varepsilon_{1} x_{2}+\varepsilon_{2} y_{2}\right) w \\
& =g\left(\beta_{1}\right) z+g\left(\beta_{2}\right) w \\
& =g\left(\beta_{1} z+\beta_{2} w\right) \\
& =g(0)=0
\end{aligned}
$$

Thus,

$$
\left(\begin{array}{cc}
y_{1} & y_{2} \tag{5}\\
x_{1} & x_{2}
\end{array}\right)\binom{z}{w}=\binom{y_{1} z+y_{2} w}{x_{1} z+x_{2} w} \in \operatorname{ker} f=C S(A) .
$$

Now, there are two cases to consider.
Case 1: Suppose x_{1} is a unit. Since $\binom{E_{13}}{E_{24}} \in C S(C)$, we have $\left(\begin{array}{cc}y_{1} & y_{2} \\ x_{1} & x_{2}\end{array}\right)\binom{E_{13}}{E_{24}} \in C S(A)$ by the Equation (5). Hence,

$$
\begin{aligned}
\left(\begin{array}{ll}
y_{1} & y_{2} \\
x_{1} & x_{2}
\end{array}\right)\binom{E_{13}}{E_{24}} & =a_{1}\binom{E_{23}}{-E_{13}}+a_{2}\binom{E_{24}}{-E_{14}}+a_{3}\binom{E_{13}}{O} \\
& =a_{4}\binom{E_{14}}{O}+a_{5}\binom{O}{E_{23}}+a_{6}\binom{O}{E_{24}} .
\end{aligned}
$$

for some $a_{i} \in k, 1 \leq i \leq 6$ (See the comments after Equation (2)). Thus,

$$
\begin{align*}
& y_{1} E_{13}+y_{2} E_{24}=a_{1} E_{23}+a_{2} E_{24}+a_{3} E_{13}+a_{4} E_{14} \\
& x_{1} E_{13}+x_{2} E_{24}=-a_{1} E_{13}-a_{2} E_{14}+a_{5} E_{23}+a_{6} E_{24} . \tag{6}
\end{align*}
$$

Let $x_{1}=t_{1} I_{4}+s_{1}$ with $t_{1} \in k$ and $s_{1} \in J(\mathcal{B})$. The first equation in (6) then implies $a_{1}=a_{4}=0$. The second equation in (6) then implies $t_{1}=0$. Thus, $x_{1} \in J(\mathcal{B})$. Since we are assuming x_{1} is a unit, this is impossible.

Case 2: Suppose y_{1} is a unit. Since $\binom{E_{23}}{O} \in C S(C)$, we have $\left(\begin{array}{ll}y_{1} & y_{2} \\ x_{1} & x_{2}\end{array}\right)\binom{E_{23}}{O} \in C S(A)$ by the Equation (5). Hence,

$$
\begin{aligned}
\left(\begin{array}{cc}
y_{1} & y_{2} \\
x_{1} & x_{2}
\end{array}\right)\binom{E_{23}}{O} & =b_{1}\binom{E_{23}}{-E_{13}}+b_{2}\binom{E_{24}}{-E_{14}}+b_{3}\binom{E_{13}}{O} \\
& +b_{4}\binom{E_{14}}{O}+b_{5}\binom{O}{E_{23}}+b_{6}\binom{O}{E_{24}} .
\end{aligned}
$$

for some $b_{i} \in k, 1 \leq i \leq 6$. Thus,

$$
\begin{align*}
& y_{1} E_{23}=b_{1} E_{23}+b_{2} E_{24}+b_{3} E_{13}+b_{4} E_{14} \\
& x_{1} E_{23}=-b_{1} E_{13}-b_{2} E_{14}+b_{5} E_{23}+b_{6} E_{24} . \tag{7}
\end{align*}
$$

The second equation in (7) implies $b_{1}=0$ and the first equation in (7) implies $y_{1} \in J(\mathcal{B})$. This is impossible. We conclude there is no \mathcal{B}-module isomorphism g between $\mathcal{B}^{2} / C S(C)$ and k^{4}.

Thus, $M \mathcal{B}(4)$ has at least two isomorphism classes $\left[\mathcal{B}^{2} / C S(A)\right]$ and $\left[\mathcal{B}^{2} / C S(C)\right]$. We will denote the minimal number of generators of \mathcal{B} module N by $\mu_{\mathcal{B}}(N)$.

Theorem 2.4. Let $N \in M \mathcal{B}(4)$. Then, $\mu_{\mathcal{B}}(N)=2$.
Proof. Since $\operatorname{dim}_{k}(N)=4,1 \leq \mu_{\mathcal{B}}(N) \leq 4$. Suppose $\mu_{\mathcal{B}}(N)=1$. Then, $N=\alpha \mathcal{B}$ for some $\alpha \in N$. Let $f: \mathcal{B} \longrightarrow N$ be a map defined by $f(b)=\alpha b$ for $b \in \mathcal{B}$. Then, f is a \mathcal{B}-module epimorphism. If $b \in \operatorname{ker} f$, then $\alpha b=0$. Thus, $b \in A n n_{\mathcal{B}}(\alpha)=A n n_{\mathcal{B}}(\alpha \mathcal{B})$. Since N is a faithful, \mathcal{B}-module, $A n n_{\mathcal{B}}(\alpha \mathcal{B})=(0)$. Therefore, $b=0$ and hence f is a \mathcal{B} module isomorphism. Thus, $5=\operatorname{dim}_{k}(\mathcal{B})=\operatorname{dim}_{k}(\alpha \mathcal{B})=4$. This is impossible. Hence, $2 \leq \mu_{\mathcal{B}}(N) \leq 4$.

Suppose $\mu_{\mathcal{B}}(N)=4$. By Nakayama's Lemma, we have $\mu_{\mathcal{B}}(N)=$ $\operatorname{dim}_{k}(N / N J(\mathcal{B}))$. Therefore, $\operatorname{dim}_{k}(N J(\mathcal{B}))=0$. Thus, $N J(\mathcal{B})=(0)$. Since N is a faithful, \mathcal{B}-module, we conclude $J(\mathcal{B})=(0)$. This is impossible.

Suppose $\mu_{\mathcal{B}}(N)=3$. Then, $N=\alpha_{1} \mathcal{B}+\alpha_{2} \mathcal{B}+\alpha_{3} \mathcal{B}$ for some $\alpha_{i}, i=$ $1,2,3$. After relabeling the α_{i} 's if need be, we can assume $\alpha_{1}, \alpha_{2}, \alpha_{3}$ satisfy precisely one of the following four conditions:

Case 1: $\alpha_{i} J(\mathcal{B})=(0)$ for $i=1,2,3$.
Case 2: $\alpha_{i} J(\mathcal{B})=(0)$ for $i=1,2$ and $\alpha_{3} J(\mathcal{B}) \neq(0)$.
Case 3: $\alpha_{1} J(\mathcal{B})=(0)$ and $\alpha_{i} J(\mathcal{B}) \neq(0)$ for $i=2,3$.
Case 4: $\alpha_{i} J(\mathcal{B}) \neq(0)$ for $i=1,2,3$.
We will show all four cases lead to a contradiction.
Case 1: Suppose $\alpha_{i} J(\mathcal{B})=(0)$ for all $i=1,2,3$. Then, $N J(\mathcal{B})=$ (0). Since N is a faithful, \mathcal{B}-module, $J(\mathcal{B})=(0)$. This is impossible.

Case 2: Suppose $\alpha_{i} J(\mathcal{B})=(0)$ for all $i=1,2$ and $\alpha_{3} J(\mathcal{B}) \neq$ (0). Suppose $\alpha_{3} b=0$ for some $b \in \mathcal{B}$. If b is a unit, then $\alpha_{3}=0$. This is impossible. Thus, $b \in J(\mathcal{B})$. Hence, $b \in \operatorname{Ann}_{\mathcal{B}}(N)$. Since N is a faithful, \mathcal{B}-module, we conclude $b=0$. Thus, $A n n_{\mathcal{B}}\left(\alpha_{3}\right)=(0)$ and hence $\mathcal{B} \cong \alpha_{3} \mathcal{B} \subseteq N$ as \mathcal{B}-modules. Since $\operatorname{dim}_{k}(\mathcal{B})=5$, this is impossible.

Case 3: Suppose $\alpha_{1} J(\mathcal{B})=(0)$ and $\alpha_{i} J(\mathcal{B}) \neq(0)$ for $i=2,3$. Since $\left\{\beta_{1}=\left(\begin{array}{c}I_{4} \\ O \\ O\end{array}\right), \beta_{2}=\left(\begin{array}{c}O \\ I_{4} \\ O\end{array}\right), \beta_{3}=\left(\begin{array}{c}O \\ O \\ I_{4}\end{array}\right)\right\}$ is a free \mathcal{B}-module basis of \mathcal{B}^{3}, the map $\varphi: \mathcal{B}^{3} \longrightarrow N$ defined by $\varphi\left(\sum_{i=1}^{3} \beta_{i} b_{i}\right)=\sum_{i=1}^{3} \alpha_{i} b_{i}$, $b_{i} \in \mathcal{B}, i=1,2,3$ is a well defined \mathcal{B}-module epimorphism. Thus, $\mathcal{B}^{3} / \operatorname{ker} \varphi \cong N$ as \mathcal{B}-modules. Since $\operatorname{dim}_{k}\left(\mathcal{B}^{3}\right)=15$ and $\operatorname{dim}_{k}(N)=4$, $\operatorname{dim}_{k}(\operatorname{ker} \varphi)=11$. Hence, $\operatorname{ker} \varphi$ has the following form

$$
\operatorname{ker} \varphi=\sum_{i=1}^{11}\left(\begin{array}{c}
x_{i} \\
y_{i} \\
z_{i}
\end{array}\right) \mathcal{B}, \quad x_{i}, y_{i}, z_{i} \in \mathcal{B}, i=1, \ldots, 11 .
$$

Furthermore, if $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \operatorname{ker} \varphi$, then x, y, z are not units in \mathcal{B}. For example, suppose x is a unit in \mathcal{B}. Since $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \operatorname{ker} \varphi, \alpha_{1}=$ $(-1 / x)\left(\alpha_{2} y+\alpha_{3} z\right)$. Thus, $\mu_{\mathcal{B}}(N)<3$ which is impossible.

Since $J(\mathcal{B})^{2}=(0)$, ker φ can be written in the following form

$$
\operatorname{ker} \varphi=\oplus_{i=1}^{11} k\left(\begin{array}{c}
x_{i} \\
y_{i} \\
z_{i}
\end{array}\right)
$$

Here, $x_{i}, y_{i}, z_{i} \in J(\mathcal{B}), i=1, \ldots, 11$. Since $\alpha_{1} J(\mathcal{B})=(0),\left(\beta_{1}+\right.$ $\operatorname{ker} \varphi) J(\mathcal{B})=(0)$ in $\mathcal{B}^{3} / \operatorname{ker} \varphi$. Thus, $\left(\begin{array}{c}J(\mathcal{B}) \\ O \\ O\end{array}\right) \subseteq \operatorname{ker} \varphi$. Since $\alpha_{i} J(\mathcal{B}) \neq(0)$ for $i=2,3, \quad 1 \leq \operatorname{dim}_{k}\left(\operatorname{Ann}_{\mathcal{B}}\left(\alpha_{i}\right)\right)<4$ for $i=2,3$. Therefore, we have the following six subcases to consider.

Subcase 1: $\operatorname{dim}_{k}\left(\operatorname{Ann_{\mathcal {B}}}\left(\alpha_{i}\right)\right)=1$ for $i=2,3$
Subcase 2: $\operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{2}\right)\right)=2$ and $\operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{3}\right)\right)=1$
Subcase 3: $\operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{i}\right)\right)=2$ for $i=2,3$
Subcase 4: $\operatorname{dim}_{k}\left(\operatorname{Ann_{\mathcal {B}}}\left(\alpha_{2}\right)\right)=3$ and $\operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{3}\right)\right)=1$
Subcase 5: $\operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{2}\right)\right)=3$ and $\operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{3}\right)\right)=2$

Subcase 6: $\operatorname{dim}_{k}\left(\operatorname{Ann_{\mathcal {B}}}\left(\alpha_{i}\right)\right)=3$ for $i=2,3$
We will show all six subcases lead to a contradiction.
Subcase 1: Suppose $\operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{i}\right)\right)=1$ for $i=2,3$. Let $A n n_{\mathcal{B}}\left(\alpha_{i}\right)=k s_{i}, s_{i} \in J(\mathcal{B}), i=2,3$. Then, $\left(\begin{array}{c}O \\ s_{2} \\ O\end{array}\right),\left(\begin{array}{c}O \\ O \\ s_{3}\end{array}\right) \in \operatorname{ker} \varphi$. Since $\alpha_{1} J(\mathcal{B})=(0),\left(\begin{array}{c}J(\mathcal{B}) \\ O \\ O\end{array}\right) \subseteq \operatorname{ker} \varphi$. Let

$$
\begin{array}{r}
\left\{\left(\begin{array}{c}
E_{13} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
E_{14} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
E_{23} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
E_{24} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
O \\
s_{2} \\
O
\end{array}\right),\left(\begin{array}{c}
O \\
O \\
s_{3}
\end{array}\right),\right. \\
\\
\left.\left(\begin{array}{c}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right),\left(\begin{array}{c}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right),\left(\begin{array}{c}
x_{3} \\
y_{3} \\
z_{3}
\end{array}\right),\left(\begin{array}{c}
x_{4} \\
y_{4} \\
z_{4}
\end{array}\right),\left(\begin{array}{c}
x_{5} \\
y_{5} \\
z_{5}
\end{array}\right)\right\}
\end{array}
$$

be a basis of ker φ. Since $\operatorname{dim}_{k}(J(\mathcal{B}))=4$ and $x_{i} \in J(\mathcal{B})$ for $i=$ $1, \ldots, 5, x_{i} \in L\left(E_{13}, E_{14}, E_{23}, E_{24}\right)$ for $i=1, \ldots, 5$. Thus,

$$
\begin{gathered}
\left\{\delta_{1}=\left(\begin{array}{c}
E_{13} \\
O \\
O
\end{array}\right), \delta_{2}=\left(\begin{array}{c}
E_{14} \\
O \\
O
\end{array}\right), \delta_{3}=\left(\begin{array}{c}
E_{23} \\
O \\
O
\end{array}\right), \delta_{4}=\left(\begin{array}{c}
E_{24} \\
O \\
O
\end{array}\right),\right. \\
\delta_{5}=\left(\begin{array}{c}
O \\
s_{2} \\
O
\end{array}\right), \delta_{6}=\left(\begin{array}{c}
O \\
O \\
s_{3}
\end{array}\right), \delta_{7}=\left(\begin{array}{c}
O \\
y_{1} \\
z_{1}
\end{array}\right), \delta_{8}=\left(\begin{array}{c}
O \\
y_{2} \\
z_{2}
\end{array}\right), \\
\left.\delta_{9}=\left(\begin{array}{c}
O \\
y_{3} \\
z_{3}
\end{array}\right), \delta_{10}=\left(\begin{array}{c}
O \\
y_{4} \\
z_{4}
\end{array}\right), \delta_{11}=\left(\begin{array}{c}
O \\
y_{5} \\
z_{5}
\end{array}\right)\right\}
\end{gathered}
$$

is a basis of $\operatorname{ker} \varphi$. Therefore, $\operatorname{ker} \varphi$ can be written in the following form

$$
\operatorname{ker} \varphi=\left(\begin{array}{c}
J \\
O \\
O
\end{array}\right) \oplus k\left(\begin{array}{c}
O \\
s_{2} \\
O
\end{array}\right) \oplus k\left(\begin{array}{c}
O \\
O \\
s_{3}
\end{array}\right) \oplus \sum_{i=1}^{5} k\left(\begin{array}{c}
O \\
y_{i} \\
z_{i}
\end{array}\right) .
$$

Since $\operatorname{dim}_{k}(J(\mathcal{B}))=4,\left\{s_{2}, y_{1}, \ldots, y_{5}\right\}$ is a linearly dependent set. Thus, there exist $d, c_{1}, \ldots, c_{5} \in k$ not all zero such that $d s_{2}+c_{1} y_{1}+$ $\cdots+c_{5} y_{5}=0$. If $c_{i}=0$ for all $i=1, \ldots, 5$, then $d \neq 0$ and $d s_{2}=0$. This implies $s_{2}=0$. This is impossible since $\left(\begin{array}{c}0 \\ s_{2} \\ 0\end{array}\right)$ is a basis vector of $k e r \varphi$. Hence, some c_{i} is not zero. We can assume $c_{5} \neq 0$. Thus, $y_{5} \in L\left(s_{2}, y_{1}, \ldots, y_{4}\right)$. We can repeat this proof on $s_{2}, y_{1}, \ldots, y_{4}$ and assume $y_{4} \in L\left(s_{2}, y_{1}, y_{2}, y_{3}\right)$. Hence, we may assume $y_{4}, y_{5} \in L\left(s_{2}, y_{1}, y_{2}, y_{3}\right)$. Therefore, $y_{4}=d s_{2}+c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}$ for some $d, c_{1}, c_{2}, c_{3} \in k$. If $d \delta_{5}+c_{1} \delta_{7}+c_{2} \delta_{8}+c_{3} \delta_{9}-\delta_{10}=0$, then $\left\{\delta_{5}, \delta_{7}, \delta_{8}, \delta_{9}, \delta_{10}\right\}$ is linearly dependent which is impossible. Thus, $d \delta_{5}+c_{1} \delta_{7}+c_{2} \delta_{8}+c_{3} \delta_{9}-\delta_{10}=\left(\begin{array}{c}O \\ O \\ z\end{array}\right)$ with $z \neq 0$ in $J(\mathcal{B})$. If $z=t s_{3}$ for some $t \in k$, then $d \delta_{5}+c_{1} \delta_{7}+c_{2} \delta_{8}+c_{3} \delta_{9}-\delta_{10}-t \delta_{6}=0$ and $\left\{\delta_{5}, \delta_{6}, \delta_{7}, \delta_{8}, \delta_{9}, \delta_{10}\right\}$ is linearly dependent which is impossible. Thus, $\left(\begin{array}{l}O \\ O \\ z\end{array}\right) \in \operatorname{ker} \varphi \backslash k \delta_{6}$. Therefore, $\operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{3}\right)\right) \geq 2$. This is a contradiction.

Subcase 2: Suppose $\operatorname{dim}_{k}\left(\operatorname{Ann}_{\mathcal{B}}\left(\alpha_{2}\right)\right)=2$ and $\operatorname{dim}_{k}\left(\operatorname{Ann}_{\mathcal{B}}\left(\alpha_{3}\right)\right)=$ 1. Then, $A n n_{\mathcal{B}}\left(\alpha_{2}\right)=k s_{1}+k s_{2}$ and $A n n_{\mathcal{B}}\left(\alpha_{3}\right)=k s_{3}$ for some $s_{i} \in$ $J(\mathcal{B}), i=1,2,3$. Let

$$
\begin{aligned}
&\left\{\left(\begin{array}{c}
E_{13} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
E_{14} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
E_{23} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
E_{24} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
O \\
s_{1} \\
O
\end{array}\right),\left(\begin{array}{c}
O \\
s_{2} \\
O
\end{array}\right)\right. \\
&\left.\left(\begin{array}{c}
O \\
O \\
s_{3}
\end{array}\right),\left(\begin{array}{c}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right),\left(\begin{array}{c}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right),\left(\begin{array}{c}
x_{3} \\
y_{3} \\
z_{3}
\end{array}\right),\left(\begin{array}{c}
x_{4} \\
y_{4} \\
z_{4}
\end{array}\right)\right\}
\end{aligned}
$$

be a basis of $\operatorname{ker} \varphi$. Since $\operatorname{dim}_{k}(J(\mathcal{B}))=4$ and $x_{i} \in J(\mathcal{B})$ for $i=$
$1, \ldots, 4, x_{i} \in L\left(E_{13}, E_{14}, E_{23}, E_{24}\right)$ for $i=1, \ldots, 4$. Thus,

$$
\begin{gathered}
\left\{\delta_{1}=\left(\begin{array}{c}
E_{13} \\
O \\
O
\end{array}\right), \delta_{2}=\left(\begin{array}{c}
E_{14} \\
O \\
O
\end{array}\right), \delta_{3}=\left(\begin{array}{c}
E_{23} \\
O \\
O
\end{array}\right), \delta_{4}=\left(\begin{array}{c}
E_{24} \\
O \\
O
\end{array}\right)\right. \\
\delta_{5}=\left(\begin{array}{c}
O \\
s_{1} \\
O
\end{array}\right), \delta_{6}=\left(\begin{array}{c}
O \\
s_{2} \\
O
\end{array}\right), \delta_{7}=\left(\begin{array}{c}
O \\
O \\
s_{3}
\end{array}\right), \delta_{8}=\left(\begin{array}{c}
O \\
y_{1} \\
z_{1}
\end{array}\right) \\
\left.\delta_{9}=\left(\begin{array}{c}
O \\
y_{2} \\
z_{2}
\end{array}\right), \delta_{10}=\left(\begin{array}{c}
O \\
y_{3} \\
z_{3}
\end{array}\right), \delta_{11}=\left(\begin{array}{c}
O \\
y_{4} \\
z_{4}
\end{array}\right)\right\}
\end{gathered}
$$

is a basis of $\operatorname{ker} \varphi$. Since $\operatorname{dim}_{k}(J(\mathcal{B}))=4,\left\{s_{3}, z_{1}, \ldots, z_{4}\right\}$ is a linearly dependent set. Thus, there exist $d, c_{1}, \ldots, c_{4} \in k$ not all zero such that $d s_{3}+c_{1} z_{1}+\cdots+c_{4} z_{4}=0$. If $c_{i}=0$ for all $i=1, \ldots, 4$, then $d \neq 0$ and $d s_{3}=0$. This implies $s_{3}=0$. This is impossible since $\left(\begin{array}{c}O \\ O \\ s_{3}\end{array}\right)$ is a basis vector of $\operatorname{ker} \varphi$. Hence, some c_{i} is not zero. We can assume $c_{4} \neq 0$. Thus, $z_{4}=d s_{3}+c_{1} z_{1}+c_{2} z_{2}+c_{3} z_{3}$ for some $d, c_{1}, c_{2}, c_{3} \in$ k. If $d \delta_{7}+c_{1} \delta_{8}+c_{2} \delta_{9}+c_{3} \delta_{10}-\delta_{11}=0$, then $\left\{\delta_{7}, \delta_{8}, \delta_{9}, \delta_{10}, \delta_{11}\right\}$ is linearly dependent which is impossible. Thus, $d \delta_{7}+c_{1} \delta_{8}+c_{2} \delta_{9}+$ $c_{3} \delta_{10}-\delta_{11}=\left(\begin{array}{c}O \\ y \\ O\end{array}\right)$ with $y \neq 0$ in $J(\mathcal{B})$. If $y=t_{1} s_{1}+t_{2} s_{2}$ for some $t_{1}, t_{2} \in k$, then $d \delta_{7}+c_{1} \delta_{8}+c_{2} \delta_{9}+c_{3} \delta_{10}-\delta_{11}-t_{1} \delta_{5}-t_{2} \delta_{6}=0$ and $\left\{\delta_{5}, \delta_{6}, \delta_{7}, \delta_{8}, \delta_{9}, \delta_{10}, \delta_{11}\right\}$ is linearly dependent which is impossible.
Thus, $\left(\begin{array}{c}O \\ y \\ O\end{array}\right) \in \operatorname{ker} \varphi \backslash k \delta_{5}+k \delta_{6}$. Therefore, $\operatorname{dim}_{k}\left(\operatorname{Ann}_{\mathcal{B}}\left(\alpha_{2}\right)\right) \geq 3$. This is a contradiction.

Subcase 3: Suppose $\operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{i}\right)\right)=2$ for $i=2,3$. Then, $A n n_{\mathcal{B}}\left(\alpha_{2}\right)=k s_{1}+k s_{2}$ and $A n n_{\mathcal{B}}\left(\alpha_{3}\right)=k s_{3}+k s_{4}$ for some $s_{i} \in$
$J(\mathcal{B}), i=1,2,3,4$. Let

$$
\begin{aligned}
&\left\{\left(\begin{array}{c}
E_{13} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
E_{14} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
E_{23} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
E_{24} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
O \\
s_{1} \\
O
\end{array}\right),\left(\begin{array}{c}
O \\
s_{2} \\
O
\end{array}\right)\right. \\
&\left.\left(\begin{array}{c}
O \\
O \\
s_{3}
\end{array}\right),\left(\begin{array}{c}
O \\
O \\
s_{4}
\end{array}\right),\left(\begin{array}{c}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right),\left(\begin{array}{c}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right),\left(\begin{array}{c}
x_{3} \\
y_{3} \\
z_{3}
\end{array}\right)\right\}
\end{aligned}
$$

be a basis of $k e r \varphi$. Since $\operatorname{dim}_{k}(J(\mathcal{B}))=4$ and $x_{i} \in J(\mathcal{B})$ for $i=$ $1,2,3, x_{i} \in L\left(E_{13}, E_{14}, E_{23}, E_{24}\right)$ for $i=1,2,3$. Thus,

$$
\begin{gathered}
\left\{\delta_{1}=\left(\begin{array}{c}
E_{13} \\
O \\
O
\end{array}\right), \delta_{2}=\left(\begin{array}{c}
E_{14} \\
O \\
O
\end{array}\right), \delta_{3}=\left(\begin{array}{c}
E_{23} \\
O \\
O
\end{array}\right), \delta_{4}=\left(\begin{array}{c}
E_{24} \\
O \\
O
\end{array}\right),\right. \\
\delta_{5}=\left(\begin{array}{l}
O \\
s_{1} \\
O
\end{array}\right), \delta_{6}=\left(\begin{array}{c}
O \\
s_{2} \\
O
\end{array}\right), \delta_{7}=\left(\begin{array}{c}
O \\
O \\
s_{3}
\end{array}\right), \delta_{8}=\left(\begin{array}{c}
O \\
O \\
s_{4}
\end{array}\right), \\
\left.\delta_{9}=\left(\begin{array}{c}
O \\
y_{1} \\
z_{1}
\end{array}\right), \delta_{10}=\left(\begin{array}{c}
O \\
y_{2} \\
z_{2}
\end{array}\right), \delta_{11}=\left(\begin{array}{c}
O \\
y_{3} \\
z_{3}
\end{array}\right)\right\}
\end{gathered}
$$

is a basis of $\operatorname{ker} \varphi$. Since $\operatorname{dim}_{k}(J(\mathcal{B}))=4,\left\{s_{1}, s_{2}, y_{1}, y_{2}, y_{3}\right\}$ is a linearly dependent set. Thus, there exist $d_{1}, d_{2}, c_{1}, c_{2}, c_{3} \in k$ not all zero such that $d_{1} s_{1}+d_{2} s_{2}+c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}=0$. If $c_{i}=0$ for all $i=1,2,3$, then $d_{1} s_{1}+d_{2} s_{2}=0$. Since s_{1}, s_{2} are linearly independent vectors in $J(\mathcal{B}), d_{1}=d_{2}=0$. This is impossible. Thus, $c_{i} \neq 0$ for some $1 \leq i \leq 3$. We can assume $c_{3} \neq 0$. Hence, $y_{3}=d_{1} s_{1}+d_{2} s_{2}+c_{1} y_{1}+c_{2} y_{2}$ for some $d_{1}, d_{2}, c_{1}, c_{2} \in k$. If $d_{1} \delta_{5}+d_{2} \delta_{6}+c_{1} \delta_{9}+c_{2} \delta_{10}-\delta_{11}=0$, then $\left\{\delta_{5}, \delta_{6}, \delta_{9}, \delta_{10}, \delta_{11}\right\}$ is linearly dependent which is impossible. Thus, $d_{1} \delta_{5}+d_{2} \delta_{6}+c_{1} \delta_{9}+c_{2} \delta_{10}-\delta_{11}=\left(\begin{array}{c}O \\ O \\ z\end{array}\right)$ with $z \neq 0$ in $J(\mathcal{B})$. If $z=t_{3} s_{3}+t_{4} s_{4}$ for some $t_{3}, t_{4} \in k$, then $d_{1} \delta_{5}+d_{2} \delta_{6}+c_{1} \delta_{9}+c_{2} \delta_{10}-\delta_{11}-$ $t_{3} \delta_{7}-t_{4} \delta_{8}=0$. This is a contradiction. Thus, $\left(\begin{array}{l}O \\ O \\ z\end{array}\right) \in \operatorname{ker} \varphi \backslash k \delta_{7}+k \delta_{8}$. Therefore, $\operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{3}\right)\right) \geq 3$ and this is a contradiction.

Subcase 4: Suppose $\operatorname{dim}_{k}\left(\operatorname{Ann}_{\mathcal{B}}\left(\alpha_{2}\right)\right)=3$ and $\operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{3}\right)\right)=$ 1. Then, $A n n_{\mathcal{B}}\left(\alpha_{2}\right)=k s_{1}+k s_{2}+k s_{3}$ and $A n n_{\mathcal{B}}\left(\alpha_{3}\right)=k s_{4}$ for some $s_{i} \in J(\mathcal{B}), i=1,2,3,4$. Let

$$
\begin{array}{r}
\left\{\left(\begin{array}{c}
E_{13} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
E_{14} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
E_{23} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
E_{24} \\
O \\
O
\end{array}\right),\left(\begin{array}{l}
O \\
s_{1} \\
O
\end{array}\right),\left(\begin{array}{c}
O \\
s_{2} \\
O
\end{array}\right),\right. \\
\\
\left.\left(\begin{array}{c}
O \\
s_{3} \\
O
\end{array}\right),\left(\begin{array}{c}
O \\
O \\
s_{4}
\end{array}\right),\left(\begin{array}{c}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right),\left(\begin{array}{c}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right),\left(\begin{array}{c}
x_{3} \\
y_{3} \\
z_{3}
\end{array}\right)\right\}
\end{array}
$$

be a basis of ker φ. Since $\operatorname{dim}_{k}(J(\mathcal{B}))=4$ and $x_{i} \in J(\mathcal{B}), x_{i} \in$ $L\left(E_{13}, E_{14}, E_{23}, E_{24}\right)$ for $i=1,2,3$. Thus,

$$
\begin{gathered}
\left\{\delta_{1}=\left(\begin{array}{c}
E_{13} \\
O \\
O
\end{array}\right), \delta_{2}=\left(\begin{array}{c}
E_{14} \\
O \\
O
\end{array}\right), \delta_{3}=\left(\begin{array}{c}
E_{23} \\
O \\
O
\end{array}\right), \delta_{4}=\left(\begin{array}{c}
E_{24} \\
O \\
O
\end{array}\right),\right. \\
\delta_{5}=\left(\begin{array}{l}
O \\
s_{1} \\
O
\end{array}\right), \delta_{6}=\left(\begin{array}{c}
O \\
s_{2} \\
O
\end{array}\right), \delta_{7}=\left(\begin{array}{c}
O \\
s_{3} \\
O
\end{array}\right), \delta_{8}=\left(\begin{array}{c}
O \\
O \\
s_{4}
\end{array}\right), \\
\left.\delta_{9}=\left(\begin{array}{c}
O \\
y_{1} \\
z_{1}
\end{array}\right) \delta_{10}=\left(\begin{array}{c}
O \\
y_{2} \\
z_{2}
\end{array}\right), \delta_{11}=\left(\begin{array}{c}
O \\
y_{3} \\
z_{3}
\end{array}\right)\right\}
\end{gathered}
$$

is a basis of $\operatorname{ker} \varphi$. Since $\operatorname{dim}_{k}(J(\mathcal{B}))=4,\left\{s_{1}, s_{2}, s_{3}, y_{1}, y_{2}, y_{3}\right\}$ is a linearly dependent set. Thus, there exist $d_{1}, d_{2}, d_{3}, c_{1}, c_{2}, c_{3} \in k$ not all zero such that $d_{1} s_{1}+d_{2} s_{2}+d_{3} s_{3}+c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}=0$. If $c_{i}=0$ for all $i=1,2,3$, then $d_{1} s_{1}+d_{2} s_{2}+d_{3} s_{3}=0$ Since s_{1}, s_{2}, s_{3} are linearly independent vectors in $J(\mathcal{B}), d_{1}=d_{2}=d_{3}=0$. This is impossible. Thus, $c_{i} \neq 0$ for some i. We can assume $c_{3} \neq 0$. Hence, $y_{3}=d_{1} s_{1}+d_{2} s_{2}+d_{3} s_{3}+c_{1} y_{1}+c_{2} y_{2}$ for some $d_{1}, d_{2}, d_{3}, c_{1}, c_{2} \in k$. If $d_{1} \delta_{5}+d_{2} \delta_{6}+d_{3} \delta_{7}+c_{1} \delta_{9}+c_{2} \delta_{10}-\delta_{11}=0$, then $\left\{\delta_{5}, \delta_{6}, \delta_{7}, \delta_{9}, \delta_{10}, \delta_{11}\right\}$ is linearly dependent which is impossible. Thus, $d_{1} \delta_{5}+d_{2} \delta_{6}+d_{3} \delta_{7}+$ $c_{1} \delta_{9}+c_{2} \delta_{10}-\delta_{11}=\left(\begin{array}{c}O \\ O \\ z\end{array}\right)$ with $z \neq 0$ in $J(\mathcal{B})$. If $z=t s_{4}$ for some $t \in k$, then $d_{1} \delta_{5}+d_{2} \delta_{6}+d_{3} \delta_{7}+c_{1} \delta_{9}+c_{2} \delta_{10}-\delta_{11}-t \delta_{8}=0$. This is impossible
since $\left\{\delta_{5}, \delta_{6}, \delta_{7}, \delta_{8}, \delta_{9}, \delta_{10}, \delta_{11}\right\}$ is linearly independent. Thus, $\left(\begin{array}{c}O \\ O \\ z\end{array}\right) \in$ $k e r \varphi \backslash k \delta_{8}$. Therefore, $\operatorname{dim}_{k}\left(\operatorname{Ann}_{\mathcal{B}}\left(\alpha_{3}\right)\right) \geq 2$ and this is a contradiction.

Subcase 5: Suppose $\operatorname{dim}_{k}\left(\operatorname{Ann}_{\mathcal{B}}\left(\alpha_{2}\right)\right)=3$ and $\operatorname{dim}_{k}\left(\operatorname{Ann}_{\mathcal{B}}\left(\alpha_{3}\right)\right)=$ 2. Then, $A n n_{\mathcal{B}}\left(\alpha_{2}\right)=k s_{1}+k s_{2}+k s_{3}$ and $A n n_{\mathcal{B}}\left(\alpha_{3}\right)=k s_{4}+k s_{5}$ for some $s_{i} \in J(\mathcal{B}), i=1,2,3,4,5$. Let

$$
\begin{array}{r}
\left\{\left(\begin{array}{c}
E_{13} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
E_{14} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
E_{23} \\
O \\
O
\end{array}\right),\left(\begin{array}{c}
E_{24} \\
O \\
O
\end{array}\right),\left(\begin{array}{l}
O \\
s_{1} \\
O
\end{array}\right),\left(\begin{array}{l}
O \\
s_{2} \\
O
\end{array}\right),\right. \\
\left.\left(\begin{array}{c}
O \\
s_{3} \\
O
\end{array}\right),\left(\begin{array}{c}
O \\
O \\
s_{4}
\end{array}\right),\left(\begin{array}{c}
O \\
O \\
s_{5}
\end{array}\right),\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right),\left(\begin{array}{c}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)\right\}
\end{array}
$$

be a basis of ker φ. Since $J(\mathcal{B})=L\left(E_{13}, E_{14}, E_{23}, E_{24}\right)$ and $x_{1}, x_{2} \in$ $J(\mathcal{B}), x_{1}, x_{2} \in L\left(E_{13}, E_{14}, E_{23}, E_{24}\right)$. Thus,

$$
\begin{gathered}
\left\{\delta_{1}=\left(\begin{array}{c}
E_{13} \\
O \\
O
\end{array}\right), \delta_{2}=\left(\begin{array}{c}
E_{14} \\
O \\
O
\end{array}\right), \delta_{3}=\left(\begin{array}{c}
E_{23} \\
O \\
O
\end{array}\right), \delta_{4}=\left(\begin{array}{c}
E_{24} \\
O \\
O
\end{array}\right)\right. \\
\delta_{5}=\left(\begin{array}{c}
O \\
s_{1} \\
O
\end{array}\right), \delta_{6}=\left(\begin{array}{c}
O \\
s_{2} \\
O
\end{array}\right), \delta_{7}=\left(\begin{array}{c}
O \\
s_{3} \\
O
\end{array}\right), \delta_{8}=\left(\begin{array}{c}
O \\
O \\
s_{4}
\end{array}\right) \\
\left.\delta_{9}=\left(\begin{array}{c}
O \\
O \\
s_{5}
\end{array}\right), \delta_{10}=\left(\begin{array}{c}
O \\
y_{1} \\
z_{1}
\end{array}\right), \delta_{11}=\left(\begin{array}{c}
O \\
y_{2} \\
z_{2}
\end{array}\right)\right\}
\end{gathered}
$$

is a basis of $\operatorname{ker} \varphi$. Since $\operatorname{dim}_{k}(J(\mathcal{B}))=4,\left\{s_{1}, s_{2}, s_{3}, y_{1}, y_{2}\right\}$ is a linearly dependent set. Thus, there exist $d_{1}, d_{2}, d_{3}, c_{1}, c_{2} \in k$ not all zero such that $d_{1} s_{1}+d_{2} s_{2}+d_{3} s_{3}+c_{1} y_{1}+c_{2} y_{2}=0$. If $c_{1}=c_{2}=0$, then $d_{1} s_{1}+d_{2} s_{2}+d_{3} s_{3}=0$. Since s_{1}, s_{2}, s_{3} are linearly independent vectors in $J(\mathcal{B}), d_{1}=d_{2}=d_{3}=0$. This is impossible. Thus, $c_{i} \neq 0$ for some i. We can assume $c_{2} \neq 0$. Hence, $y_{2}=d_{1} s_{1}+d_{2} s_{2}+d_{3} s_{3}+c_{1} y_{1}$ for some $d_{1}, d_{2}, d_{3}, c_{1} \in k$. If $d_{1} \delta_{5}+d_{2} \delta_{6}+d_{3} \delta_{7}+c_{1} \delta_{10}-\delta_{11}=0$, then $\left\{\delta_{5}, \delta_{6}, \delta_{7}, \delta_{10}, \delta_{11}\right\}$ is linearly dependent which is impossible. Thus,
$d_{1} \delta_{5}+d_{2} \delta_{6}+d_{3} \delta_{7}+c_{1} \delta_{10}-\delta_{11}=\left(\begin{array}{c}O \\ O \\ z\end{array}\right)$ with $z \neq 0$ in $J(\mathcal{B})$. If $z=t_{4} s_{4}+t_{5} s_{5}$ for some $t_{4}, t_{5} \in k$, then $d_{1} \delta_{5}+d_{2} \delta_{6}+d_{3} \delta_{7}+c_{1} \delta_{10}-\delta_{11}-$ $t_{4} \delta_{8}-t_{5} \delta_{9}=0$. This is again impossible since $\left\{\delta_{5}, \delta_{6}, \delta_{7}, \delta_{8}, \delta_{9}, \delta_{10}, \delta_{11}\right\}$ is linearly independent. Thus, $\left(\begin{array}{c}O \\ O \\ z\end{array}\right) \in \operatorname{ker} \varphi \backslash k \delta_{8}+k \delta_{9}$. Therefore, $\operatorname{dim}_{k}\left(\operatorname{Ann}_{\mathcal{B}}\left(\alpha_{3}\right)\right) \geq 3$ which is a contradiction.

Subcase 6: Suppose $\operatorname{dim}_{k}\left(\operatorname{Ann}_{\mathcal{B}}\left(\alpha_{i}\right)\right)=3$ for $i=2,3$. Note that

$$
\begin{align*}
& \operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{2}\right)\right)+\operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{3}\right)\right)= \\
& \operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{2}\right)+\operatorname{Ann_{\mathcal {B}}}\left(\alpha_{3}\right)\right)+\operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{2}\right) \cap A n n_{\mathcal{B}}\left(\alpha_{3}\right)\right) . \tag{8}
\end{align*}
$$

Since $\operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{2}\right)+A n n_{\mathcal{B}}\left(\alpha_{3}\right)\right) \leq \operatorname{dim}_{k}(J(\mathcal{B}))=4$, Equation (8) implies $\operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{2}\right) \cap A n n_{\mathcal{B}}\left(\alpha_{3}\right)\right) \geq 2$ Thus, there is $0 \neq b \in$ $A n n_{\mathcal{B}}\left(\alpha_{2}\right) \cap A n n_{\mathcal{B}}\left(\alpha_{3}\right)$. This is a contradiction. We have now shown any of the subcases in Case 3 lead to a contradiction. Hence, Case 3 is impossible.

Case 4: Suppose $\alpha_{i} J(\mathcal{B}) \neq(0)$ for $i=1,2,3$. Let $n_{i}=$ $\operatorname{dim}_{k}\left(A n n_{\mathcal{B}}\left(\alpha_{i}\right)\right)$. By relabeling the $\alpha_{i}^{\prime} s$ if need be, there are ten subcases to consider.

Subcase 1: Suppose $n_{i}=1$ for $i=1,2,3$.
Subcase 2: Suppose $n_{1}=2, n_{2}=n_{3}=1$.
Subcase 3: Suppose $n_{1}=n_{2}=2, n_{3}=1$.
Subcase 4: Suppose $n_{i}=2$ for $i=1,2,3$.
Subcase 5: Suppose $n_{1}=3, n_{2}=n_{3}=1$.
Subcase 6: Suppose $n_{1}=3, n_{2}=2, n_{3}=1$.
Subcase 7: Suppose $n_{1}=3, n_{2}=n_{3}=2$.
Subcase 8: Suppose $n_{1}=n_{2}=3, n_{3}=1$.
Subcase 9: Suppose $n_{1}=n_{2}=3, n_{3}=2$.
Subcase 10: Suppose $n_{i}=3$ for $i=1,2,3$.
A proof similar to that given in Case 3 will show that Subcase 1 through Subcase 9 are impossible. Subcase 10 is also impossible. To see this, let V be a vector space and suppose $W_{i}, i=1,2,3$ are subspaces of V. Suppose $\operatorname{dim}_{k}(V)=n$. Then, we have the following equation.
(9)

$$
\begin{aligned}
& \operatorname{dim}_{k}\left(W_{1} \cap W_{2} \cap W_{3}\right)=n-\sum_{i=1}^{3}\left(n-\operatorname{dim}_{k}\left(W_{i}\right)\right) \\
& \quad+\left\{\left(n-\operatorname{dim}_{k}\left(W_{1}+W_{2}\right)\right)+\left(n-\operatorname{dim}_{k}\left(\left(W_{1} \cap W_{2}\right)+W_{3}\right)\right)\right\} .
\end{aligned}
$$

Suppose $V=\mathcal{B}$ and $W_{i}=\operatorname{Ann}_{\mathcal{B}}\left(\alpha_{i}\right), i=1,2,3$. Then, Equation (9) implies $\operatorname{dim}_{k}\left(W_{1} \cap W_{2} \cap W_{3}\right)=9-\operatorname{dim}_{k}\left(W_{1}+W_{2}\right)-\operatorname{dim}_{k}\left(\left(W_{1} \cap W_{2}\right)+\right.$ $\left.W_{3}\right)$. Since $\operatorname{dim}_{k}\left(W_{1}+W_{2}\right) \leq 4$ and $\operatorname{dim}_{k}\left(\left(W_{1} \cap W_{2}\right)+W_{3}\right) \leq 4$, we have $\operatorname{dim}_{k}\left(W_{1} \cap W_{2} \cap W_{3}\right) \geq 1$. Thus, there exists $0 \neq b \in W_{1} \cap W_{2} \cap W_{3}$. Since $W_{i}=A n n_{\mathcal{B}}\left(\alpha_{i}\right), i=1,2,3, \alpha_{i} b=0$ for $i=1,2,3$. Thus, $b \in A n n_{\mathcal{B}}(N)=(0)$ which is a contradiction.

Therefore, all four cases are impossible. Hence we conclude that $\mu_{\mathcal{B}}(N)=2$.

References

1. W.C.Brown and F.W.Call, Maximal Commutative Subalgebras of $n \times n$ Matrices, Communications in Algebra 21(12), 4439-4460, 1993.
2. W.C.Brown, Two Constructions of Maximal Commutative Subalgebras of $n \times n$ Matrices, Communications in Algebra 22(10), 4051-4066, 1994.
3. R.C.Courter, The Dimension of Maximal Commutative Subalgebras of K_{n}, Duke Mathematical J. 32, 225-232, 1965.

Department of Mathematics
Sogang University
Seoul, Korea
E-mail: tschung@matws1.sogang.ac.kr

