A STUDY ON THE SCHUR ALGEBRA OF SIZE 4

YOUNG KWON SONG

ABSTRACT. In this paper, we will show that the minimal number of generators of any four dimensional, faithful, $\mathcal{B}($ Schur algebra of size 4)-module is two. This result can be applied to classify the isomorphism classes of the class { $\mathcal{B} \ltimes N^2 \mid N$ is a faithful, \mathcal{B} -module with $dim_k(N) = 4$ }.

1. Introduction

In this paper, k will denote an arbitrary field. Throughout this paper, we will denote the Schur algebra of size 4 by \mathcal{B} . Thus,

$$\mathcal{B} = \left\{ \begin{pmatrix} x & 0 & a & b \\ 0 & x & c & d \\ 0 & 0 & x & 0 \\ 0 & 0 & 0 & x \end{pmatrix} \mid x, a, b, c, d \in k \right\}.$$

Recall that a commutative k-algebra R is a (B, N)-construction if R is k-algebra isomorphic to $B \ltimes N^{\ell}$, the idealization of a B-module N, for some finite dimensional, commutative, local, k-algebra B and finitely generated, faithful, B-module N and natural number ℓ .

In [1], W.C.Brown and F.W.Call showed that the Courter's algebra \mathcal{C} is a (B, N)-construction, where B is the Schur algebra of size 4, $N = k^4$, and $\ell = 2$. That is, $\mathcal{C} \cong \mathcal{B} \ltimes (k^4)^2$. But, as we will see in the next section, there are at least two nonisomorphic \mathcal{B} -modules. Thus, it is very natural to be asked how many isomorphism classes can be constructed by varying the faithful, \mathcal{B} -module N.

Let $M\mathcal{B}(4) = \{N \mid N \text{ is a faithful, } \mathcal{B}\text{-module and } dim_k(N) = 4\}.$ Then, we will show the minimal number of generators of N in $M\mathcal{B}(4)$

Received May 14, 1996.

¹⁹⁹¹ Mathematics Subject Classification: 13C05.

Key words and phrases: module, minimal number of generators.

is two. This can be a fundamental building block to classify the isomorphism classes of the class $\{R \mid R \text{ is a } k\text{-algebra and } R \cong \mathcal{B} \ltimes N^2 \text{ for}$ some $N \in M\mathcal{B}(4) \}$.

2. Classification of $M\mathcal{B}(4)$

We will first show the set $M\mathcal{B}(4)$ has at least two isomorphism classes. To see this, we first need a \mathcal{B} -module presentation of k^4 . We will denote the *i*, *j*-th matrix unit of $M_{4\times 4}(k)$ by E_{ij} . Notice that $E_{ij} \in \mathcal{B}$ if i = 1, 2, j = 3, 4.

LEMMA 2.1. Let

(1)
$$A = \begin{pmatrix} E_{23} & E_{24} & E_{13} & E_{14} & O & O \\ -E_{13} & -E_{14} & O & O & E_{23} & E_{24} \end{pmatrix} \in M_{2 \times 6}(\mathcal{B}).$$

Then, $\mathcal{B}^2/CS(A) \in M\mathcal{B}(4)$.

Proof. Obviously, $\mathcal{B}^2/CS(A)$ is a finitely generated, \mathcal{B} -module. Since $dim_k(\mathcal{B}^2) = 10$ and $dim_k(CS(A)) = 6$, $dim_k(\mathcal{B}^2/CS(A)) = 4$. Suppose $r \in Ann_{\mathcal{B}}(\mathcal{B}^2/CS(A))$. Then, $r\begin{pmatrix} I_4\\ O \end{pmatrix}, r\begin{pmatrix} O\\ I_4 \end{pmatrix} \in CS(A)$. Thus, $\begin{pmatrix} r\\ O \end{pmatrix}, \begin{pmatrix} O\\ r \end{pmatrix} \in CS(A)$ which implies that for some $x_i, y_j \in \mathcal{B}$, $1 \leq i, j \leq 6$

(2)

$$r = x_{1}E_{23} + x_{2}E_{24} + x_{3}E_{13} + x_{4}E_{14}$$

$$0 = -x_{1}E_{13} - x_{2}E_{14} + x_{5}E_{23} + x_{6}E_{24}$$

$$0 = y_{1}E_{23} + y_{2}E_{24} + y_{3}E_{13} + y_{4}E_{14}$$

$$r = -y_{1}E_{13} - y_{2}E_{14} + y_{5}E_{23} + y_{6}E_{24}$$

Since $J(\mathcal{B})^2 = (0)$, we can assume $x_i, y_j \in k = kI_4$ for $1 \leq i, j \leq 6$. The second and third equations in (2) imply $x_1, x_2, x_5, x_6, y_1, y_2, y_3, y_4$ are all zero. Thus, $r = x_3E_{13} + x_4E_{14} = y_5E_{23} + y_6E_{24}$. Therefore, r = 0. Hence, $Ann_{\mathcal{B}}(\mathcal{B}^2/CS(A)) = (0)$ and $\mathcal{B}^2/CS(A)$ is a faithful, \mathcal{B} -module. \Box

LEMMA 2.2. Let A be the matrix in Equation (1). Then $\mathcal{B}^2/CS(A)$ is \mathcal{B} -module isomorphic to k^4 .

Proof. Let $f: \mathcal{B}^2 \longrightarrow k^4$ be the map defined by $f\begin{pmatrix} x\\ y \end{pmatrix} = \varepsilon_2 x + \varepsilon_1 y.$ Here, $\varepsilon_1 = (1, 0, 0, 0)$ and $\varepsilon_2 = (0, 1, 0, 0)$. Then, f is a surjective, \mathcal{B} -module homomorphism. If $\begin{pmatrix} z \\ w \end{pmatrix} \in ker f$, then $z = a_1I_4 + a_2E_{13} + a_3E_{14} + a_4E_{23} + a_5E_{24}$ and $w = b_1I_4 + b_2E_{13} + b_3E_{14} + b_4E_{23} + b_5E_{24}$ for some $a_i, b_i \in k, i = 1, \dots, 5$. Since $f \begin{pmatrix} z \\ w \end{pmatrix} = \varepsilon_2 z + \varepsilon_1 w = 0, a_1 = b_1 = 0$. $b_1 = 0, b_2 = -a_4$, and $b_3 = -a_5$ Thus,

$$\begin{pmatrix} z \\ w \end{pmatrix} = a_2 \begin{pmatrix} E_{13} \\ O \end{pmatrix} + a_3 \begin{pmatrix} E_{14} \\ O \end{pmatrix} + a_4 \begin{pmatrix} E_{23} \\ -E_{13} \end{pmatrix}$$
$$+ a_5 \begin{pmatrix} E_{24} \\ -E_{14} \end{pmatrix} + b_4 \begin{pmatrix} O \\ E_{23} \end{pmatrix} + b_5 \begin{pmatrix} O \\ E_{24} \end{pmatrix}$$

Hence, $\begin{pmatrix} z \\ w \end{pmatrix} \in CS(A)$. It is easy to check that $CS(A) \subseteq kerf$. Therefore, CS(A) = kerf. Hence, $\mathcal{B}^2/CS(A) \cong k^4$ as \mathcal{B} -modules. $\Box \Box$

We can now construct a faithful, \mathcal{B} -module of dimension 4 which is not isomorphic to k^4 as \mathcal{B} -modules.

THEOREM 2.3:. Let

(3)
$$C = \begin{pmatrix} E_{13} & E_{14} & E_{23} & E_{24} & O & O \\ E_{24} & E_{23} & O & O & E_{13} & E_{14} \end{pmatrix} \in M_{2 \times 6}(\mathcal{B}).$$

Then, $\mathcal{B}^2/CS(C) \in M\mathcal{B}(4)$ and $\mathcal{B}^2/CS(C)$ is not \mathcal{B} -module isomorphic to k^4 .

Proof. Obviously, $\mathcal{B}^2/CS(C)$ is a finitely generated, \mathcal{B} -module. Since $dim_k(\mathcal{B}^2) = 10$ and $dim_k(CS(C)) = 6$, $dim_k(\mathcal{B}^2/CS(C)) = 4$. Suppose $r \in Ann_{\mathcal{B}}(\mathcal{B}^2/CS(C))$. Then, $\begin{pmatrix} r \\ O \end{pmatrix}, \begin{pmatrix} O \\ r \end{pmatrix} \in CS(C)$ which

implies that for some $x_i, y_j \in \mathcal{B}, 1 \leq i, j \leq 6$

(4)

$$r = x_1 E_{13} + x_2 E_{14} + x_3 E_{23} + x_4 E_{24}$$

$$0 = x_1 E_{24} + x_2 E_{23} + x_5 E_{13} + x_6 E_{14}$$

$$0 = y_1 E_{13} + y_2 E_{14} + y_3 E_{23} + y_4 E_{24}$$

$$r = y_1 E_{24} + y_2 E_{23} + y_5 E_{13} + y_6 E_{14}$$

Since $J(\mathcal{B})^2 = (0)$, we can assume $x_i, y_j \in k = kI_4$ for $1 \leq i, j \leq 6$. The second and third equations in (4) imply $x_1, x_2, x_5, x_6, y_1, y_2, y_3, y_4$ are all zero. Thus, $r = x_3E_{23} + x_4E_{24} = y_5E_{13} + y_6E_{14}$. Therefore, r = 0. Hence, $Ann_{\mathcal{B}}(\mathcal{B}^2/CS(C)) = (0)$ and $\mathcal{B}^2/CS(C) \in M\mathcal{B}(4)$.

Suppose $\mathcal{B}^2/CS(C)$ is \mathcal{B} -module isomorphic to k^4 . Then, there exists a \mathcal{B} -module isomorphism $g : \mathcal{B}^2/CS(C) \longrightarrow k^4$. Let $\beta_1 = \begin{pmatrix} I_4 \\ O \end{pmatrix}^- = \begin{pmatrix} I_4 \\ O \end{pmatrix}^+ + CS(C) \in \mathcal{B}^2/CS(C)$. and $\beta_2 = \begin{pmatrix} O \\ I_4 \end{pmatrix}^-$. Then, $\mathcal{B}^2/CS(C) = \beta_1 \mathcal{B} + \beta_2 \mathcal{B}$. Since $k^4 = \varepsilon_1 \mathcal{B} + \varepsilon_2 \mathcal{B}, g(\beta_1) = \varepsilon_1 x_1 + \varepsilon_2 y_1$ and $g(\beta_2) = \varepsilon_1 x_2 + \varepsilon_2 y_2$ for some $x_i, y_i \in \mathcal{B}, i = 1, 2$. Notice that x_1 or y_1 is unit. To see this, suppose $x_1, y_1 \in J(\mathcal{B})$. Then, $g(\beta_1) = \varepsilon_1 x_1 + \varepsilon_2 y_1 \in k^4 J(\mathcal{B})$. The inclusions

$$k^4 = g(\beta_1)\mathcal{B} + g(\beta_2)\mathcal{B} \subseteq k^4 J(\mathcal{B}) + g(\beta_2)J(\mathcal{B}) \subseteq k^4$$

imply that $k^4 = k^4 J(\mathcal{B}) + g(\beta_2)J(\mathcal{B})$. By Nakayama's Lemma, $k^4 = g(\beta_2)J(\mathcal{B})$. This implies \mathcal{B} is isomorphic to k^4 as \mathcal{B} -modules and hence $dim_k(\mathcal{B}) = 4$. Since $dim_k(\mathcal{B}) = 5$, this is impossible. Hence, x_1 or y_1 is unit in \mathcal{B} . Similarly, x_2 or y_2 is unit.

Let A be the matrix given in Equation (1) and let f be the \mathcal{B} -module homomorphism given in the proof of Lemma 2.2. If $\begin{pmatrix} z \\ w \end{pmatrix} \in CS(C)$, then

$$f\begin{pmatrix} y_1z + y_2w\\ x_1z + x_2w \end{pmatrix} = \varepsilon_1(x_1z + x_2w) + \varepsilon_2(y_1z + y_2w)$$
$$= (\varepsilon_1x_1 + \varepsilon_2y_1)z + (\varepsilon_1x_2 + \varepsilon_2y_2)w$$
$$= g(\beta_1)z + g(\beta_2)w$$
$$= g(\beta_1z + \beta_2w)$$
$$= g(0) = 0.$$

Thus,

(5)
$$\begin{pmatrix} y_1 & y_2 \\ x_1 & x_2 \end{pmatrix} \begin{pmatrix} z \\ w \end{pmatrix} = \begin{pmatrix} y_1 z + y_2 w \\ x_1 z + x_2 w \end{pmatrix} \in kerf = CS(A)$$

Now, there are two cases to consider.

Case 1: Suppose x_1 is a unit. Since $\begin{pmatrix} E_{13} \\ E_{24} \end{pmatrix} \in CS(C)$, we have $\begin{pmatrix} y_1 & y_2 \\ x_1 & x_2 \end{pmatrix} \begin{pmatrix} E_{13} \\ E_{24} \end{pmatrix} \in CS(A)$ by the Equation (5). Hence, $\begin{pmatrix} y_1 & y_2 \\ x_1 & x_2 \end{pmatrix} \begin{pmatrix} E_{13} \\ E_{24} \end{pmatrix} = a_1 \begin{pmatrix} E_{23} \\ -E_{13} \end{pmatrix} + a_2 \begin{pmatrix} E_{24} \\ -E_{14} \end{pmatrix} + a_3 \begin{pmatrix} E_{13} \\ O \end{pmatrix}$ $= a_4 \begin{pmatrix} E_{14} \\ O \end{pmatrix} + a_5 \begin{pmatrix} O \\ E_{23} \end{pmatrix} + a_6 \begin{pmatrix} O \\ E_{24} \end{pmatrix}.$

for some $a_i \in k, 1 \leq i \leq 6$ (See the comments after Equation (2)). Thus,

(6)
$$y_1E_{13} + y_2E_{24} = a_1E_{23} + a_2E_{24} + a_3E_{13} + a_4E_{14}$$
$$x_1E_{13} + x_2E_{24} = -a_1E_{13} - a_2E_{14} + a_5E_{23} + a_6E_{24}.$$

Let $x_1 = t_1I_4 + s_1$ with $t_1 \in k$ and $s_1 \in J(\mathcal{B})$. The first equation in (6) then implies $a_1 = a_4 = 0$. The second equation in (6) then implies $t_1 = 0$. Thus, $x_1 \in J(\mathcal{B})$. Since we are assuming x_1 is a unit, this is impossible.

Case 2: Suppose y_1 is a unit. Since $\begin{pmatrix} E_{23} \\ O \end{pmatrix} \in CS(C)$, we have $\begin{pmatrix} y_1 & y_2 \\ x_1 & x_2 \end{pmatrix} \begin{pmatrix} E_{23} \\ O \end{pmatrix} \in CS(A)$ by the Equation (5). Hence, $\begin{pmatrix} y_1 & y_2 \\ x_1 & x_2 \end{pmatrix} \begin{pmatrix} E_{23} \\ O \end{pmatrix} = b_1 \begin{pmatrix} E_{23} \\ -E_{13} \end{pmatrix} + b_2 \begin{pmatrix} E_{24} \\ -E_{14} \end{pmatrix} + b_3 \begin{pmatrix} E_{13} \\ O \end{pmatrix} + b_4 \begin{pmatrix} E_{14} \\ O \end{pmatrix} + b_5 \begin{pmatrix} O \\ E_{23} \end{pmatrix} + b_6 \begin{pmatrix} O \\ E_{24} \end{pmatrix}.$

for some $b_i \in k, 1 \leq i \leq 6$. Thus,

(7)
$$y_1 E_{23} = b_1 E_{23} + b_2 E_{24} + b_3 E_{13} + b_4 E_{14}$$
$$x_1 E_{23} = -b_1 E_{13} - b_2 E_{14} + b_5 E_{23} + b_6 E_{24}.$$

The second equation in (7) implies $b_1 = 0$ and the first equation in (7) implies $y_1 \in J(\mathcal{B})$. This is impossible. We conclude there is no \mathcal{B} -module isomorphism g between $\mathcal{B}^2/CS(C)$ and k^4 . \Box

Thus, $M\mathcal{B}(4)$ has at least two isomorphism classes $[\mathcal{B}^2/CS(A)]$ and $[\mathcal{B}^2/CS(C)]$. We will denote the minimal number of generators of \mathcal{B} -module N by $\mu_{\mathcal{B}}(N)$.

THEOREM 2.4. Let $N \in M\mathcal{B}(4)$. Then, $\mu_{\mathcal{B}}(N) = 2$.

Proof. Since $dim_k(N) = 4$, $1 \leq \mu_{\mathcal{B}}(N) \leq 4$. Suppose $\mu_{\mathcal{B}}(N) = 1$. Then, $N = \alpha \mathcal{B}$ for some $\alpha \in N$. Let $f : \mathcal{B} \longrightarrow N$ be a map defined by $f(b) = \alpha b$ for $b \in \mathcal{B}$. Then, f is a \mathcal{B} -module epimorphism. If $b \in kerf$, then $\alpha b = 0$. Thus, $b \in Ann_{\mathcal{B}}(\alpha) = Ann_{\mathcal{B}}(\alpha \mathcal{B})$. Since N is a faithful, \mathcal{B} -module, $Ann_{\mathcal{B}}(\alpha \mathcal{B}) = (0)$. Therefore, b = 0 and hence f is a \mathcal{B} -module isomorphism. Thus, $5 = dim_k(\mathcal{B}) = dim_k(\alpha \mathcal{B}) = 4$. This is impossible. Hence, $2 \leq \mu_{\mathcal{B}}(N) \leq 4$.

Suppose $\mu_{\mathcal{B}}(N) = 4$. By Nakayama's Lemma, we have $\mu_{\mathcal{B}}(N) = dim_k(N/NJ(\mathcal{B}))$. Therefore, $dim_k(NJ(\mathcal{B})) = 0$. Thus, $NJ(\mathcal{B}) = (0)$. Since N is a faithful, \mathcal{B} -module, we conclude $J(\mathcal{B}) = (0)$. This is impossible.

Suppose $\mu_{\mathcal{B}}(N) = 3$. Then, $N = \alpha_1 \mathcal{B} + \alpha_2 \mathcal{B} + \alpha_3 \mathcal{B}$ for some $\alpha_i, i = 1, 2, 3$. After relabeling the α_i 's if need be, we can assume $\alpha_1, \alpha_2, \alpha_3$ satisfy precisely one of the following four conditions :

Case 1: $\alpha_i J(\mathcal{B}) = (0)$ for i = 1, 2, 3. **Case 2:** $\alpha_i J(\mathcal{B}) = (0)$ for i = 1, 2 and $\alpha_3 J(\mathcal{B}) \neq (0)$. **Case 3:** $\alpha_1 J(\mathcal{B}) = (0)$ and $\alpha_i J(\mathcal{B}) \neq (0)$ for i = 2, 3. **Case 4:** $\alpha_i J(\mathcal{B}) \neq (0)$ for i = 1, 2, 3.

We will show all four cases lead to a contradiction.

Case 1: Suppose $\alpha_i J(\mathcal{B}) = (0)$ for all i = 1, 2, 3. Then, $NJ(\mathcal{B}) = (0)$. Since N is a faithful, \mathcal{B} -module, $J(\mathcal{B}) = (0)$. This is impossible.

Case 2: Suppose $\alpha_i J(\mathcal{B}) = (0)$ for all i = 1, 2 and $\alpha_3 J(\mathcal{B}) \neq (0)$. Suppose $\alpha_3 b = 0$ for some $b \in \mathcal{B}$. If b is a unit, then $\alpha_3 = 0$. This is impossible. Thus, $b \in J(\mathcal{B})$. Hence, $b \in Ann_{\mathcal{B}}(N)$. Since N is a faithful, \mathcal{B} -module, we conclude b = 0. Thus, $Ann_{\mathcal{B}}(\alpha_3) = (0)$ and hence $\mathcal{B} \cong \alpha_3 \mathcal{B} \subseteq N$ as \mathcal{B} -modules. Since $dim_k(\mathcal{B}) = 5$, this is impossible.

Case 3: Suppose
$$\alpha_1 J(\mathcal{B}) = (0)$$
 and $\alpha_i J(\mathcal{B}) \neq (0)$ for $i = 2, 3$. Since $\left\{ \beta_1 = \begin{pmatrix} I_4 \\ O \\ O \end{pmatrix}, \beta_2 = \begin{pmatrix} O \\ I_4 \\ O \end{pmatrix}, \beta_3 = \begin{pmatrix} O \\ O \\ I_4 \end{pmatrix} \right\}$ is a free \mathcal{B} -module basis of \mathbb{R}^3 , i.e., \mathbb{R}^3 , \mathbb{R}^3

 \mathcal{B}^3 , the map $\varphi : \mathcal{B}^3 \longrightarrow N$ defined by $\varphi(\sum_{i=1}^3 \beta_i b_i) = \sum_{i=1}^3 \alpha_i b_i$, $b_i \in \mathcal{B}, i = 1, 2, 3$ is a well defined \mathcal{B} -module epimorphism. Thus, $\mathcal{B}^3/ker\varphi \cong N$ as \mathcal{B} -modules. Since $dim_k(\mathcal{B}^3) = 15$ and $dim_k(N) = 4$, $dim_k(ker\varphi) = 11$. Hence, $ker\varphi$ has the following form

$$ker\varphi = \sum_{i=1}^{11} \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix} \mathcal{B}, \ x_i, y_i, z_i \in \mathcal{B}, i = 1, \dots, 11.$$

Furthermore, if $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in ker\varphi$, then x, y, z are not units in \mathcal{B} . For example, suppose x is a unit in \mathcal{B} . Since $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in ker\varphi$, $\alpha_1 = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n$

 $(-1/x)(\alpha_2 y + \alpha_3 z)$. Thus, $\mu_{\mathcal{B}}(N) < 3$ which is impossible. Since $J(\mathcal{B})^2 = (0)$, $ker\varphi$ can be written in the following form

$$ker\varphi = \oplus_{i=1}^{11} k \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix}.$$

Here, $x_i, y_i, z_i \in J(\mathcal{B}), i = 1, ..., 11$. Since $\alpha_1 J(\mathcal{B}) = (0), (\beta_1 + ker\varphi)J(\mathcal{B}) = (0)$ in $\mathcal{B}^3/ker\varphi$. Thus, $\begin{pmatrix} J(\mathcal{B})\\ O\\ O \end{pmatrix} \subseteq ker\varphi$. Since

 $\alpha_i J(\mathcal{B}) \neq (0)$ for $i = 2, 3, 1 \leq dim_k(Ann_{\mathcal{B}}(\alpha_i)) < 4$ for i = 2, 3.Therefore, we have the following six subcases to consider.

Subcase 1: $dim_k(Ann_{\mathcal{B}}(\alpha_i)) = 1$ for i = 2, 3**Subcase 2:** $dim_k(Ann_{\mathcal{B}}(\alpha_2)) = 2$ and $dim_k(Ann_{\mathcal{B}}(\alpha_3)) = 1$ Subcase 3: $dim_k(Ann_{\mathcal{B}}(\alpha_i)) = 2$ for i = 2, 3**Subcase 4:** $dim_k(Ann_{\mathcal{B}}(\alpha_2)) = 3$ and $dim_k(Ann_{\mathcal{B}}(\alpha_3)) = 1$ **Subcase 5:** $dim_k(Ann_{\mathcal{B}}(\alpha_2)) = 3$ and $dim_k(Ann_{\mathcal{B}}(\alpha_3)) = 2$

Subcase 6: $dim_k(Ann_{\mathcal{B}}(\alpha_i)) = 3$ for i = 2, 3

We will show all six subcases lead to a contradiction.

Subcase 1: Suppose $dim_k(Ann_{\mathcal{B}}(\alpha_i)) = 1$ for i = 2, 3. Let $Ann_{\mathcal{B}}(\alpha_i) = ks_i, s_i \in J(\mathcal{B}), \ i = 2, 3$. Then, $\begin{pmatrix} O\\ s_2\\ O \end{pmatrix}, \begin{pmatrix} O\\ O\\ s_3 \end{pmatrix} \in ker\varphi$. Since $\alpha_1 J(\mathcal{B}) = (0), \begin{pmatrix} J(\mathcal{B})\\ O\\ O \end{pmatrix} \subseteq ker\varphi$. Let $\begin{cases} \begin{pmatrix} E_{13}\\ O\\ O \end{pmatrix}, \begin{pmatrix} E_{14}\\ O\\ O \end{pmatrix}, \begin{pmatrix} E_{23}\\ O\\ O \end{pmatrix}, \begin{pmatrix} E_{24}\\ O\\ O \end{pmatrix}, \begin{pmatrix} O\\ s_2\\ O \end{pmatrix}, \begin{pmatrix} O\\ s_3 \end{pmatrix}, \begin{pmatrix} O\\ s_3 \end{pmatrix}, \begin{pmatrix} x_1\\ y_1\\ z_1 \end{pmatrix}, \begin{pmatrix} x_2\\ y_2\\ z_2 \end{pmatrix}, \begin{pmatrix} x_3\\ y_3\\ z_3 \end{pmatrix}, \begin{pmatrix} x_4\\ y_4\\ z_4 \end{pmatrix}, \begin{pmatrix} x_5\\ y_5\\ z_5 \end{pmatrix} \end{cases}$

be a basis of $ker\varphi$. Since $dim_k(J(\mathcal{B})) = 4$ and $x_i \in J(\mathcal{B})$ for $i = 1, \ldots, 5, x_i \in L(E_{13}, E_{14}, E_{23}, E_{24})$ for $i = 1, \ldots, 5$. Thus,

$$\begin{cases} \delta_1 = \begin{pmatrix} E_{13} \\ O \\ O \end{pmatrix}, \delta_2 = \begin{pmatrix} E_{14} \\ O \\ O \end{pmatrix}, \delta_3 = \begin{pmatrix} E_{23} \\ O \\ O \end{pmatrix}, \delta_4 = \begin{pmatrix} E_{24} \\ O \\ O \\ O \end{pmatrix}, \\ \delta_5 = \begin{pmatrix} O \\ s_2 \\ O \end{pmatrix}, \delta_6 = \begin{pmatrix} O \\ O \\ s_3 \end{pmatrix}, \delta_7 = \begin{pmatrix} O \\ y_1 \\ z_1 \end{pmatrix}, \delta_8 = \begin{pmatrix} O \\ y_2 \\ z_2 \end{pmatrix}, \\ \delta_9 = \begin{pmatrix} O \\ y_3 \\ z_3 \end{pmatrix}, \delta_{10} = \begin{pmatrix} O \\ y_4 \\ z_4 \end{pmatrix}, \delta_{11} = \begin{pmatrix} O \\ y_5 \\ z_5 \end{pmatrix} \end{cases}$$

is a basis of $ker\varphi$. Therefore, $ker\varphi$ can be written in the following form

$$ker\varphi = \begin{pmatrix} J\\O\\O \end{pmatrix} \oplus k \begin{pmatrix} O\\s_2\\O \end{pmatrix} \oplus k \begin{pmatrix} O\\O\\s_3 \end{pmatrix} \oplus \sum_{i=1}^5 k \begin{pmatrix} O\\y_i\\z_i \end{pmatrix}.$$

Since $dim_k(J(\mathcal{B})) = 4, \{s_2, y_1, \ldots, y_5\}$ is a linearly dependent set. Thus, there exist $d, c_1, \ldots, c_5 \in k$ not all zero such that $ds_2 + c_1y_1 + \cdots + c_5y_5 = 0$. If $c_i = 0$ for all $i = 1, \ldots, 5$, then $d \neq 0$ and $ds_2 = 0$. This implies $s_2 = 0$. This is impossible since $\begin{pmatrix} 0\\s_2\\0 \end{pmatrix}$ is a basis vector of ker(a. Hence, some c_i is not zero. We can assume

basis vector of $ker\varphi$. Hence, some c_i is not zero. We can assume $c_5 \neq 0$. Thus, $y_5 \in L(s_2, y_1, \ldots, y_4)$. We can repeat this proof on s_2, y_1, \ldots, y_4 and assume $y_4 \in L(s_2, y_1, y_2, y_3)$. Hence, we may assume $y_4, y_5 \in L(s_2, y_1, y_2, y_3)$. Therefore, $y_4 = ds_2 + c_1y_1 + c_2y_2 + c_3y_3$ for some $d, c_1, c_2, c_3 \in k$. If $d\delta_5 + c_1\delta_7 + c_2\delta_8 + c_3\delta_9 - \delta_{10} = 0$, then $\{\delta_5, \delta_7, \delta_8, \delta_9, \delta_{10}\}$ is linearly dependent which is impossible. Thus, $d\delta_5 + c_1\delta_7 + c_2\delta_8 + c_3\delta_9 - \delta_{10} = \begin{pmatrix} O \\ O \\ z \end{pmatrix}$ with $z \neq 0$ in $J(\mathcal{B})$. If $z = ts_3$ for some $t \in k$, then $d\delta_5 + c_1\delta_7 + c_2\delta_8 + c_3\delta_9 - \delta_{10} - t\delta_6 = 0$ and $\{\delta_7, \delta_7, \delta_8, \delta_9, \delta_{10}\}$ is linearly dependent which is impossible. Thus

 $\{\delta_5, \delta_6, \delta_7, \delta_8, \delta_9, \delta_{10}\}$ is linearly dependent which is impossible. Thus, $\begin{pmatrix} O\\O\\z \end{pmatrix} \in ker\varphi \setminus k\delta_6$. Therefore, $dim_k(Ann_{\mathcal{B}}(\alpha_3)) \geq 2$. This is a con-

tradiction.

Subcase 2: Suppose $dim_k(Ann_{\mathcal{B}}(\alpha_2)) = 2$ and $dim_k(Ann_{\mathcal{B}}(\alpha_3)) = 1$. Then, $Ann_{\mathcal{B}}(\alpha_2) = ks_1 + ks_2$ and $Ann_{\mathcal{B}}(\alpha_3) = ks_3$ for some $s_i \in J(\mathcal{B}), i = 1, 2, 3$. Let

$$\left\{ \begin{pmatrix} E_{13} \\ O \\ O \end{pmatrix}, \begin{pmatrix} E_{14} \\ O \\ O \end{pmatrix}, \begin{pmatrix} E_{23} \\ O \\ O \end{pmatrix}, \begin{pmatrix} E_{24} \\ O \\ O \end{pmatrix}, \begin{pmatrix} O \\ s_1 \\ O \end{pmatrix}, \begin{pmatrix} O \\ s_2 \\ O \end{pmatrix}, \begin{pmatrix} O \\ s_2 \\ O \end{pmatrix}, \begin{pmatrix} O \\ 0 \\ s_3 \end{pmatrix}, \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}, \begin{pmatrix} x_3 \\ y_3 \\ z_3 \end{pmatrix}, \begin{pmatrix} x_4 \\ y_4 \\ z_4 \end{pmatrix} \right\}$$

be a basis of $ker\varphi$. Since $dim_k(J(\mathcal{B})) = 4$ and $x_i \in J(\mathcal{B})$ for i =

 $1, \ldots, 4, x_i \in L(E_{13}, E_{14}, E_{23}, E_{24})$ for $i = 1, \ldots, 4$. Thus,

$$\begin{cases} \delta_1 = \begin{pmatrix} E_{13} \\ O \\ O \end{pmatrix}, \delta_2 = \begin{pmatrix} E_{14} \\ O \\ O \end{pmatrix}, \delta_3 = \begin{pmatrix} E_{23} \\ O \\ O \end{pmatrix}, \delta_4 = \begin{pmatrix} E_{24} \\ O \\ O \end{pmatrix}, \\ \delta_5 = \begin{pmatrix} O \\ s_1 \\ O \end{pmatrix}, \delta_6 = \begin{pmatrix} O \\ s_2 \\ O \end{pmatrix}, \delta_7 = \begin{pmatrix} O \\ O \\ s_3 \end{pmatrix}, \delta_8 = \begin{pmatrix} O \\ y_1 \\ z_1 \end{pmatrix}, \\ \delta_9 = \begin{pmatrix} O \\ y_2 \\ z_2 \end{pmatrix}, \delta_{10} = \begin{pmatrix} O \\ y_3 \\ z_3 \end{pmatrix}, \delta_{11} = \begin{pmatrix} O \\ y_4 \\ z_4 \end{pmatrix} \end{cases}$$

is a basis of $ker\varphi$. Since $dim_k(J(\mathcal{B})) = 4$, $\{s_3, z_1, \ldots, z_4\}$ is a linearly dependent set. Thus, there exist $d, c_1, \ldots, c_4 \in k$ not all zero such that $ds_3 + c_1 z_1 + \dots + c_4 z_4 = 0$. If $c_i = 0$ for all $i = 1, \dots, 4$, then $d \neq 0$ $\begin{pmatrix} O \\ O \end{pmatrix}$ is and $ds_3 = 0$. This implies $s_3 = 0$. This is impossible since

a basis vector of $ker\varphi$. Hence, some c_i is not zero. We can assume $c_4 \neq 0$. Thus, $z_4 = ds_3 + c_1 z_1 + c_2 z_2 + c_3 z_3$ for some $d, c_1, c_2, c_3 \in$ k. If $d\delta_7 + c_1\delta_8 + c_2\delta_9 + c_3\delta_{10} - \delta_{11} = 0$, then $\{\delta_7, \delta_8, \delta_9, \delta_{10}, \delta_{11}\}$ is linearly dependent which is impossible. Thus, $d\delta_7 + c_1\delta_8 + c_2\delta_9 + c_2\delta_9 + c_1\delta_8 + c_2\delta_8 + c_2\delta_9 + c_1\delta_8 + c_2\delta_9 + c_1\delta_8 + c_2\delta_9 + c_1\delta_8 + c_2\delta_8 + c_$ $c_3\delta_{10} - \delta_{11} = \begin{pmatrix} O \\ y \\ O \end{pmatrix}$ with $y \neq 0$ in $J(\mathcal{B})$. If $y = t_1s_1 + t_2s_2$ for some $t_1, t_2 \in k$, then $d\delta_7 + c_1\delta_8 + c_2\delta_9 + c_3\delta_{10} - \delta_{11} - t_1\delta_5 - t_2\delta_6 = 0$

and $\{\delta_5, \delta_6, \delta_7, \delta_8, \delta_9, \delta_{10}, \delta_{11}\}$ is linearly dependent which is impossible. $\in ker \varphi \setminus k\delta_5 + k\delta_6$. Therefore, $dim_k(Ann_{\mathcal{B}}(\alpha_2)) \geq 3$. This

Thus,

is a contradiction.

Subcase 3: Suppose $dim_k(Ann_{\mathcal{B}}(\alpha_i)) = 2$ for i = 2, 3. Then, $Ann_{\mathcal{B}}(\alpha_2) = ks_1 + ks_2$ and $Ann_{\mathcal{B}}(\alpha_3) = ks_3 + ks_4$ for some $s_i \in$

$$J(\mathcal{B}), i = 1, 2, 3, 4. \text{ Let}$$

$$\left\{ \begin{pmatrix} E_{13} \\ O \\ O \end{pmatrix}, \begin{pmatrix} E_{14} \\ O \\ O \end{pmatrix}, \begin{pmatrix} E_{23} \\ O \\ O \end{pmatrix}, \begin{pmatrix} E_{24} \\ O \\ O \end{pmatrix}, \begin{pmatrix} O \\ s_1 \\ O \end{pmatrix}, \begin{pmatrix} O \\ s_2 \\ O \end{pmatrix}, \begin{pmatrix} O \\ s_2 \\ O \end{pmatrix}, \begin{pmatrix} O \\ O \\ s_3 \end{pmatrix}, \begin{pmatrix} O \\ O \\ s_4 \end{pmatrix}, \begin{pmatrix} C \\ y_1 \\ z_1 \end{pmatrix}, \begin{pmatrix} x_1 \\ y_2 \\ z_2 \end{pmatrix}, \begin{pmatrix} x_3 \\ y_3 \\ z_3 \end{pmatrix} \right\}$$

be a basis of $ker\varphi$. Since $dim_k(J(\mathcal{B})) = 4$ and $x_i \in J(\mathcal{B})$ for $i = 1, 2, 3, x_i \in L(E_{13}, E_{14}, E_{23}, E_{24})$ for i = 1, 2, 3. Thus,

$$\begin{cases} \delta_1 = \begin{pmatrix} E_{13} \\ O \\ O \end{pmatrix}, \delta_2 = \begin{pmatrix} E_{14} \\ O \\ O \end{pmatrix}, \delta_3 = \begin{pmatrix} E_{23} \\ O \\ O \end{pmatrix}, \delta_4 = \begin{pmatrix} E_{24} \\ O \\ O \end{pmatrix}, \\ \delta_5 = \begin{pmatrix} O \\ s_1 \\ O \end{pmatrix}, \delta_6 = \begin{pmatrix} O \\ s_2 \\ O \end{pmatrix}, \delta_7 = \begin{pmatrix} O \\ O \\ s_3 \end{pmatrix}, \delta_8 = \begin{pmatrix} O \\ O \\ s_4 \end{pmatrix}, \\ \delta_9 = \begin{pmatrix} O \\ y_1 \\ z_1 \end{pmatrix}, \delta_{10} = \begin{pmatrix} O \\ y_2 \\ z_2 \end{pmatrix}, \delta_{11} = \begin{pmatrix} O \\ y_3 \\ z_3 \end{pmatrix} \end{cases}$$

is a basis of $ker\varphi$. Since $dim_k(J(\mathcal{B})) = 4$, $\{s_1, s_2, y_1, y_2, y_3\}$ is a linearly dependent set. Thus, there exist $d_1, d_2, c_1, c_2, c_3 \in k$ not all zero such that $d_1s_1 + d_2s_2 + c_1y_1 + c_2y_2 + c_3y_3 = 0$. If $c_i = 0$ for all i = 1, 2, 3, then $d_1s_1 + d_2s_2 = 0$. Since s_1, s_2 are linearly independent vectors in $J(\mathcal{B}), d_1 = d_2 = 0$. This is impossible. Thus, $c_i \neq 0$ for some $1 \leq i \leq 3$. We can assume $c_3 \neq 0$. Hence, $y_3 = d_1s_1 + d_2s_2 + c_1y_1 + c_2y_2$ for some $d_1, d_2, c_1, c_2 \in k$. If $d_1\delta_5 + d_2\delta_6 + c_1\delta_9 + c_2\delta_{10} - \delta_{11} = 0$, then $\{\delta_5, \delta_6, \delta_9, \delta_{10}, \delta_{11}\}$ is linearly dependent which is impossible. Thus, $\langle O \rangle$

$$d_{1}\delta_{5} + d_{2}\delta_{6} + c_{1}\delta_{9} + c_{2}\delta_{10} - \delta_{11} = \begin{pmatrix} O \\ O \\ z \end{pmatrix} \text{ with } z \neq 0 \text{ in } J(\mathcal{B}). \text{ If } z = t_{3}s_{3} + t_{4}s_{4} \text{ for some } t_{3}, t_{4} \in k, \text{ then } d_{1}\delta_{5} + d_{2}\delta_{6} + c_{1}\delta_{9} + c_{2}\delta_{10} - \delta_{11} - t_{3}\delta_{7} - t_{4}\delta_{8} = 0. \text{ This is a contradiction. Thus, } \begin{pmatrix} O \\ O \\ z \end{pmatrix} \in ker\varphi \setminus k\delta_{7} + k\delta_{8}.$$

Therefore, $dim_{k}(Ann_{\mathcal{B}}(\alpha_{3})) \geq 3$ and this is a contradiction.

Subcase 4: Suppose $dim_k(Ann_{\mathcal{B}}(\alpha_2)) = 3$ and $dim_k(Ann_{\mathcal{B}}(\alpha_3)) = 1$. Then, $Ann_{\mathcal{B}}(\alpha_2) = ks_1 + ks_2 + ks_3$ and $Ann_{\mathcal{B}}(\alpha_3) = ks_4$ for some $s_i \in J(\mathcal{B}), i = 1, 2, 3, 4$. Let

$$\left\{ \begin{pmatrix} E_{13} \\ O \\ O \end{pmatrix}, \begin{pmatrix} E_{14} \\ O \\ O \end{pmatrix}, \begin{pmatrix} E_{23} \\ O \\ O \end{pmatrix}, \begin{pmatrix} E_{24} \\ O \\ O \end{pmatrix}, \begin{pmatrix} O \\ s_1 \\ O \end{pmatrix}, \begin{pmatrix} O \\ s_2 \\ O \end{pmatrix}, \begin{pmatrix} O \\ s_2 \\ O \end{pmatrix}, \begin{pmatrix} O \\ s_3 \\ O \end{pmatrix}, \begin{pmatrix} O \\ O \\ s_4 \end{pmatrix}, \begin{pmatrix} O \\ y_1 \\ z_1 \end{pmatrix}, \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}, \begin{pmatrix} x_3 \\ y_3 \\ z_3 \end{pmatrix} \right\}$$

be a basis of $ker\varphi$. Since $dim_k(J(\mathcal{B})) = 4$ and $x_i \in J(\mathcal{B}), x_i \in L(E_{13}, E_{14}, E_{23}, E_{24})$ for i = 1, 2, 3. Thus,

$$\begin{cases} \delta_1 = \begin{pmatrix} E_{13} \\ O \\ O \end{pmatrix}, \delta_2 = \begin{pmatrix} E_{14} \\ O \\ O \end{pmatrix}, \delta_3 = \begin{pmatrix} E_{23} \\ O \\ O \end{pmatrix}, \delta_4 = \begin{pmatrix} E_{24} \\ O \\ O \end{pmatrix}, \\ \delta_5 = \begin{pmatrix} O \\ s_1 \\ O \end{pmatrix}, \delta_6 = \begin{pmatrix} O \\ s_2 \\ O \end{pmatrix}, \delta_7 = \begin{pmatrix} O \\ s_3 \\ O \end{pmatrix}, \delta_8 = \begin{pmatrix} O \\ O \\ s_4 \end{pmatrix}, \\ \delta_9 = \begin{pmatrix} O \\ y_1 \\ z_1 \end{pmatrix} \delta_{10} = \begin{pmatrix} O \\ y_2 \\ z_2 \end{pmatrix}, \delta_{11} = \begin{pmatrix} O \\ y_3 \\ z_3 \end{pmatrix} \end{cases}$$

is a basis of $ker\varphi$. Since $dim_k(J(\mathcal{B})) = 4, \{s_1, s_2, s_3, y_1, y_2, y_3\}$ is a linearly dependent set. Thus, there exist $d_1, d_2, d_3, c_1, c_2, c_3 \in k$ not all zero such that $d_1s_1 + d_2s_2 + d_3s_3 + c_1y_1 + c_2y_2 + c_3y_3 = 0$. If $c_i = 0$ for all i = 1, 2, 3, then $d_1s_1 + d_2s_2 + d_3s_3 = 0$ Since s_1, s_2, s_3 are linearly independent vectors in $J(\mathcal{B}), d_1 = d_2 = d_3 = 0$. This is impossible. Thus, $c_i \neq 0$ for some i. We can assume $c_3 \neq 0$. Hence, $y_3 = d_1s_1 + d_2s_2 + d_3s_3 + c_1y_1 + c_2y_2$ for some $d_1, d_2, d_3, c_1, c_2 \in k$. If $d_1\delta_5 + d_2\delta_6 + d_3\delta_7 + c_1\delta_9 + c_2\delta_{10} - \delta_{11} = 0$, then $\{\delta_5, \delta_6, \delta_7, \delta_9, \delta_{10}, \delta_{11}\}$ is linearly dependent which is impossible. Thus, $d_1\delta_5 + d_2\delta_6 + d_3\delta_7 + c_1\delta_9 + c_2\delta_{10} - \delta_{11} = t_{s_4}$ for some $t \in k$, then $d_1\delta_5 + d_2\delta_6 + d_3\delta_7 + c_1\delta_9 + c_2\delta_{10} - \delta_{11} - t\delta_8 = 0$. This is impossible

since $\{\delta_5, \delta_6, \delta_7, \delta_8, \delta_9, \delta_{10}, \delta_{11}\}$ is linearly independent. Thus, $\begin{pmatrix} O \\ O \\ z \end{pmatrix} \in ker\varphi \setminus k\delta_8$. Therefore, $dim_k(Ann_{\mathcal{B}}(\alpha_3)) \geq 2$ and this is a contradiction.

Subcase 5: Suppose $dim_k(Ann_{\mathcal{B}}(\alpha_2)) = 3$ and $dim_k(Ann_{\mathcal{B}}(\alpha_3)) = 2$. Then, $Ann_{\mathcal{B}}(\alpha_2) = ks_1 + ks_2 + ks_3$ and $Ann_{\mathcal{B}}(\alpha_3) = ks_4 + ks_5$ for some $s_i \in J(\mathcal{B}), i = 1, 2, 3, 4, 5$. Let

$$\left\{ \begin{pmatrix} E_{13} \\ O \\ O \end{pmatrix}, \begin{pmatrix} E_{14} \\ O \\ O \end{pmatrix}, \begin{pmatrix} E_{23} \\ O \\ O \end{pmatrix}, \begin{pmatrix} E_{24} \\ O \\ O \end{pmatrix}, \begin{pmatrix} O \\ s_1 \\ O \end{pmatrix}, \begin{pmatrix} O \\ s_2 \\ O \end{pmatrix}, \begin{pmatrix} O \\ s_3 \\ O \end{pmatrix}, \begin{pmatrix} O \\ O \\ s_4 \end{pmatrix}, \begin{pmatrix} O \\ O \\ s_5 \end{pmatrix}, \begin{pmatrix} C \\ y_1 \\ y_1 \\ z_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} \right\}$$

be a basis of $ker\varphi$. Since $J(\mathcal{B}) = L(E_{13}, E_{14}, E_{23}, E_{24})$ and $x_1, x_2 \in J(\mathcal{B}), x_1, x_2 \in L(E_{13}, E_{14}, E_{23}, E_{24})$. Thus,

$$\begin{cases} \delta_1 = \begin{pmatrix} E_{13} \\ O \\ O \end{pmatrix}, \delta_2 = \begin{pmatrix} E_{14} \\ O \\ O \end{pmatrix}, \delta_3 = \begin{pmatrix} E_{23} \\ O \\ O \end{pmatrix}, \delta_4 = \begin{pmatrix} E_{24} \\ O \\ O \end{pmatrix}, \\ \delta_5 = \begin{pmatrix} O \\ s_1 \\ O \end{pmatrix}, \delta_6 = \begin{pmatrix} O \\ s_2 \\ O \end{pmatrix}, \delta_7 = \begin{pmatrix} O \\ s_3 \\ O \end{pmatrix}, \delta_8 = \begin{pmatrix} O \\ O \\ s_4 \end{pmatrix}, \\ \delta_9 = \begin{pmatrix} O \\ O \\ s_5 \end{pmatrix}, \delta_{10} = \begin{pmatrix} O \\ y_1 \\ z_1 \end{pmatrix}, \delta_{11} = \begin{pmatrix} O \\ y_2 \\ z_2 \end{pmatrix} \end{cases}$$

is a basis of $ker\varphi$. Since $dim_k(J(\mathcal{B})) = 4$, $\{s_1, s_2, s_3, y_1, y_2\}$ is a linearly dependent set. Thus, there exist $d_1, d_2, d_3, c_1, c_2 \in k$ not all zero such that $d_1s_1 + d_2s_2 + d_3s_3 + c_1y_1 + c_2y_2 = 0$. If $c_1 = c_2 = 0$, then $d_1s_1 + d_2s_2 + d_3s_3 = 0$. Since s_1, s_2, s_3 are linearly independent vectors in $J(\mathcal{B}), d_1 = d_2 = d_3 = 0$. This is impossible. Thus, $c_i \neq 0$ for some i. We can assume $c_2 \neq 0$. Hence, $y_2 = d_1s_1 + d_2s_2 + d_3s_3 + c_1y_1$ for some $d_1, d_2, d_3, c_1 \in k$. If $d_1\delta_5 + d_2\delta_6 + d_3\delta_7 + c_1\delta_{10} - \delta_{11} = 0$, then $\{\delta_5, \delta_6, \delta_7, \delta_{10}, \delta_{11}\}$ is linearly dependent which is impossible. Thus,

 $d_{1}\delta_{5} + d_{2}\delta_{6} + d_{3}\delta_{7} + c_{1}\delta_{10} - \delta_{11} = \begin{pmatrix} O \\ O \\ z \end{pmatrix} \text{ with } z \neq 0 \text{ in } J(\mathcal{B}). \text{ If } z = t_{4}s_{4} + t_{5}s_{5} \text{ for some } t_{4}, t_{5} \in k, \text{ then } d_{1}\delta_{5} + d_{2}\delta_{6} + d_{3}\delta_{7} + c_{1}\delta_{10} - \delta_{11} - t_{4}\delta_{8} - t_{5}\delta_{9} = 0. \text{ This is again impossible since } \{\delta_{5}, \delta_{6}, \delta_{7}, \delta_{8}, \delta_{9}, \delta_{10}, \delta_{11}\}$ is linearly independent. Thus, $\begin{pmatrix} O \\ O \\ z \end{pmatrix} \in ker\varphi \setminus k\delta_{8} + k\delta_{9}. \text{ Therefore, } dim_{k}(Ann_{\mathcal{B}}(\alpha_{3})) \geq 3 \text{ which is a contradiction.}$

Subcase 6: Suppose $dim_k(Ann_{\mathcal{B}}(\alpha_i)) = 3$ for i = 2, 3. Note that

 $dim_k(Ann_{\mathcal{B}}(\alpha_2)) + dim_k(Ann_{\mathcal{B}}(\alpha_3)) =$

(8) $\dim_k(Ann_{\mathcal{B}}(\alpha_2) + Ann_{\mathcal{B}}(\alpha_3)) + \dim_k(Ann_{\mathcal{B}}(\alpha_2) \cap Ann_{\mathcal{B}}(\alpha_3)).$

Since $\dim_k(Ann_{\mathcal{B}}(\alpha_2) + Ann_{\mathcal{B}}(\alpha_3)) \leq \dim_k(J(\mathcal{B})) = 4$, Equation (8) implies $\dim_k(Ann_{\mathcal{B}}(\alpha_2) \cap Ann_{\mathcal{B}}(\alpha_3)) \geq 2$ Thus, there is $0 \neq b \in$ $Ann_{\mathcal{B}}(\alpha_2) \cap Ann_{\mathcal{B}}(\alpha_3)$. This is a contradiction. We have now shown any of the subcases in Case 3 lead to a contradiction. Hence, Case 3 is impossible.

Case 4: Suppose $\alpha_i J(\mathcal{B}) \neq (0)$ for i = 1, 2, 3. Let $n_i = dim_k(Ann_{\mathcal{B}}(\alpha_i))$. By relabeling the $\alpha'_i s$ if need be, there are ten subcases to consider.

Subcase 1: Suppose $n_i = 1$ for i = 1, 2, 3. **Subcase 2:** Suppose $n_1 = 2, n_2 = n_3 = 1$. **Subcase 3:** Suppose $n_1 = n_2 = 2, n_3 = 1$. **Subcase 4:** Suppose $n_i = 2$ for i = 1, 2, 3. **Subcase 5:** Suppose $n_1 = 3, n_2 = n_3 = 1$. **Subcase 6:** Suppose $n_1 = 3, n_2 = 2, n_3 = 1$. **Subcase 7:** Suppose $n_1 = 3, n_2 = n_3 = 2$. **Subcase 8:** Suppose $n_1 = n_2 = 3, n_3 = 1$. **Subcase 9:** Suppose $n_1 = n_2 = 3, n_3 = 2$. **Subcase 10:** Suppose $n_i = 3$ for i = 1, 2, 3.

A proof similar to that given in Case 3 will show that Subcase 1 through Subcase 9 are impossible. Subcase 10 is also impossible. To see this, let V be a vector space and suppose W_i , i = 1, 2, 3 are subspaces of V. Suppose $dim_k(V) = n$. Then, we have the following equation.

(9)

$$dim_k(W_1 \cap W_2 \cap W_3) = n - \sum_{i=1}^3 (n - dim_k(W_i)) + \{(n - dim_k(W_1 + W_2)) + (n - dim_k((W_1 \cap W_2) + W_3))\}$$

Suppose $V = \mathcal{B}$ and $W_i = Ann_{\mathcal{B}}(\alpha_i), i = 1, 2, 3$. Then, Equation (9) implies $dim_k(W_1 \cap W_2 \cap W_3) = 9 - dim_k(W_1 + W_2) - dim_k((W_1 \cap W_2) + W_3)$. Since $dim_k(W_1 + W_2) \leq 4$ and $dim_k((W_1 \cap W_2) + W_3) \leq 4$, we have $dim_k(W_1 \cap W_2 \cap W_3) \geq 1$. Thus, there exists $0 \neq b \in W_1 \cap W_2 \cap W_3$. Since $W_i = Ann_{\mathcal{B}}(\alpha_i), i = 1, 2, 3, \alpha_i b = 0$ for i = 1, 2, 3. Thus, $b \in Ann_{\mathcal{B}}(N) = (0)$ which is a contradiction.

Therefore, all four cases are impossible. Hence we conclude that $\mu_{\mathcal{B}}(N) = 2$.

References

- 1. W.C.Brown and F.W.Call, Maximal Commutative Subalgebras of $n \times n$ Matrices, Communications in Algebra **21(12)**, 4439-4460, 1993.
- 2. W.C.Brown, Two Constructions of Maximal Commutative Subalgebras of $n \times n$ Matrices, Communications in Algebra **22(10)**, 4051-4066, 1994.
- R.C.Courter, The Dimension of Maximal Commutative Subalgebras of K_n, Duke Mathematical J. **32**, 225-232, 1965.

Department of Mathematics Sogang University Seoul, Korea *E-mail*: tschung@matws1.sogang.ac.kr