ON FUZZY ALMOST S-CONTINUOUS FUNCTIONS

Sung Ki Cho

ABSTRACT. In this note, the notion of fuzzy almost s-continuity is introduced and some results related to this notion are obtained.

1. Introduction

In [1], B. Ghosh introduced and investigated the notions of fuzzy semi- T_2 spaces and fuzzy semi-connected spaces. In particular, he studied these spaces under fuzzy semi-continuity. T. Noiri, B. Ahmad and M. Khan [2] introduced and studied the notion of almost s-continuous functions. The purpose of this paper is to introduce the notion of fuzzy almost s-continuous functions and to study fuzzy semi- T_2 spaces and fuzzy semi-connected spaces under fuzzy almost s-continuity.

2. Preliminaries

Throughout this paper X and Y will denote fuzzy topological spaces. For definitions and notations which are not explained in this paper, we refer to [1]. For any $\alpha \in (0,1]$ and any $x \in X$, a fuzzy point x_{α} in X is a fuzzy set in X defined by

$$x_{\alpha}(y) = \begin{cases} \alpha & \text{for } y = x \\ 0 & \text{for } y \neq x. \end{cases}$$

A fuzzy point x_{α} is said to belong to a fuzzy set A in X if $\alpha \leq A(x)$. In this case we shall use the notation $x_{\alpha} \in A$ [1]. A fuzzy open set [resp. fuzzy semi-open set] U in X is called a fuzzy open neighborhood [resp. fuzzy semi-open neighborhood] of a fuzzy point x_{α} in X if $x_{\alpha} \in U$. Two

Received April 23, 1996.

¹⁹⁹¹ Mathematics Subject Classification: 54A40.

Key words and phrases: fuzzy almost s-continuous function, fuzzy semi T_2 -space, fuzzy semi-connected space.

fuzzy sets A and B in X are said to be q-coincident (denoted by A_qB) if there exists $x \in X$ such that A(x) + B(x) > 1. When two fuzzy sets A and B in X are not q-coincident, we shall write A_qB [1]. For a fuzzy point x_α in X, a fuzzy set A in X is called a q-neighborhood [resp. semi-q-neighborhood] of x_α if there exists a fuzzy open set [resp. fuzzy semi-open set] U in X such that $x_{\alpha q}U \leq A$ [1]. A fuzzy set is called a fuzzy semi-regular if it is both fuzzy semi-open and fuzzy semi-closed. The intersection of all fuzzy semi-closed set containing a fuzzy set A is called the fuzzy semi-closure of A and is denoted by sCl(A). The union of all fuzzy semi-open sets contained in a fuzzy set B is called the fuzzy semi-interior of B and is denoted by sInt(B).

3. The characterization of fuzzy almost s-continuity

LEMMA 3.1. If A is fuzzy semi-open in X, then sCl(A) is fuzzy semi-regular in X.

Proof. By definition, sCl(A) is fuzzy semi-closed, we are left to show that sCl(A) is fuzzy semi-open. Since A is fuzzy semi-open, there exists a fuzzy open set O in X such that $O \leq A \leq Cl(O)$. This implies that $O \leq sCl(O) \leq sCl(A) \leq sCl(Cl(O)) = Cl(O)$ and hence sCl(A) is fuzzy semi-open.

DEFINITION 3.2.. A function $f: X \to Y$ is said to be fuzzy almost s-continuous if for each fuzzy point $x_{\alpha} \in X$ and each fuzzy semi-open set V in Y with $f(x_{\alpha}) \in V$, there exists a fuzzy open set O in X with $x_{\alpha} \in O$ such that $f(O) \leq sCl(V)$.

LEMMA 3.3. A function $f: X \to Y$ is fuzzy almost s-continuous if and only if for any fuzzy semi-regular set A in Y, $f^{-1}(A)$ is both fuzzy open and fuzzy closed in X.

Proof. Suppose that $f: X \to Y$ is fuzzy almost s-continuous and that A is fuzzy semi-regular in Y. If $f^{-1}(A) = O_X$, then clearly $f^{-1}(A)$ is both fuzzy open and fuzzy closed in X. Let x_{α} be a fuzzy point in $f^{-1}(A)$. Then $f(x_{\alpha}) \in A$. By hypothesis, there exists a fuzzy open set $O_{x_{\alpha}}$ in X with $x_{\alpha} \in O_{x_{\alpha}}$ such that $f(O_{x_{\alpha}}) \leq sCl(A) = A$, and hence we obtain $f^{-1}(A) = \bigcup \{x_{\alpha} | x_{\alpha} \in f^{-1}(A)\} \leq \bigcup \{O_{x_{\alpha}} | x_{\alpha} \in A\} \leq f^{-1}(A)$. This shows that $f^{-1}(A)$ is fuzzy open in X. Now, since 1 - A is

fuzzy semi-regular in Y, $1 - f^{-1}(A) = f^{-1}(1 - A)$ is fuzzy open in X. Consequently, $f^{-1}(A)$ is fuzzy closed in X.

Conversely, assume that the given condition holds. Let x_{α} be a fuzzy point in X and let V be a fuzzy semi-open set in Y with $f(x_{\alpha}) \in V$. By Lemma 3.1, sCl(V) is fuzzy semi-regular. By hypothesis, $f^{-1}(sCl(V))$ is fuzzy open in X with $x_{\alpha} \in f^{-1}(sCl(V))$. Since $f(f^{-1}(sCl(V))) \leq sCl(V)$, we conclude that f is fuzzy almost s-continuous. \square

4. Fuzzy semi- T_2 spaces and fuzzy semi-connected spaces

DEFINITION 4.1.. ([1]) A fuzzy topological space X is fuzzy T_2 [resp. fuzzy $semi-T_2$] if for every pair of distinct fuzzy points x_{α} and y_{β} , the following conditions are satisfied:

- (1) If $x \neq y$, then there exist two fuzzy open sets [resp. fuzzy semi-open sets] U and V such that $x_{\alpha} \in U$, $y_{\beta} \in V$ and U_qV .
- (2) If x = y and $\alpha < \beta$, then x_{α} has a fuzzy open neighborhood [resp. fuzzy semi-open neighborhood] U and y_{β} has a q-neighborhood [resp. semi q-neighborhood] V such that $U_{\alpha}V$.

Obviously, every fuzzy T_2 space is fuzzy semi- T_2 .

- LEMMA 4.2. A fuzzy topological space X is fuzzy semi- T_2 if and only if for every pair of distinct fuzzy points x_{α} and y_{β} , the following conditions are satisfied:
- (1) If $x \neq y$, then there exist two fuzzy semi-open sets U' and V' such that $x_{\alpha} \in U'$, $y_{\beta} \in V'$ and $sCl(U')_{q'}sCl(V')$.
- (2) If x = y and $\alpha < \beta$, then there exist two fuzzy semi-open sets U' and V' such that $x_{\alpha} \in U', y_{\beta q}V'$ and $sCl(U')_qsCl(V')$.

Proof. (\Leftarrow) Clear.

(⇒) Assume $x \neq y$. By hypothesis, there exist fuzzy semi-open sets U and V such that $x_{\alpha} \in U, y_{\beta} \in V$ and U_qV . Let U' = sInt(1 - V). Clearly, U' is fuzzy semi-open in X. Since U_qV , we have $x_{\alpha} \in U = sInt(U) \leq sInt(1 - V) = U'$. Now, let V' = 1 - sCl(U'). Then V' is a fuzzy semi-open set in X. Since $sCl(U') + V = sCl(sInt(1 - V)) + V \leq (1 - V) + V = 1 \leq 1$, we obtain $y_{\beta} \in V \leq 1 - sCl(U') = V'$. By Lemma 3.1, sCl(V') = V'. Since $sCl(U') + sCl(V') = sCl(U') + V' = sCl(U') + (1 - sCl(U')) = 1 \leq 1$, we have $sCl(U')_q sCl(V')$.

Assume that x=y and $\alpha<\beta$. By hypothesis, x_α has a fuzzy semi-open neighborhood U and y_β has a semi q-neighborhood V such that U_qV . Choose a fuzzy semi-open set W in X such that $y_{\beta q}W \leq V$. Let V'=sInt(1-U). Then V' is fuzzy semi-open in X. Since U_qW and $y_{\beta q}W$, we have $\beta+V'(y)=\beta+sInt(1-U)(y)\geq\beta+W(y)>1$. Thus $y_{\beta q}V'$. Now, let U'=1-sCl(V'). Clearly, U' is a fuzzy semi-open set in X. Since $sCl(V')+U=sCl(sInt(1-U))+U\leq (1-U)+U=1\leq 1$, we have $x_\alpha\in U\leq 1-sCl(V')=U'$. By Lemma 3.1, sCl(U')=U'. Since $sCl(V')+sCl(U')=sCl(V')+U'=sCl(V')+(1-sCl(V'))=1\leq 1$, we obtain $sCl(U')_qsCl(V')$.

THEOREM 4.3. Let $f: X \to Y$ be injective and fuzzy almost scontinuous. If Y is fuzzy semi- T_2 , then X is fuzzy T_2 .

Proof. Let x_{α} and y_{β} be two distinct fuzzy points in X.

First, assume that $x \neq y$. Since $f(x) \neq f(y)$, by (1) of Lemma 4.2, there exist two fuzzy semi-open sets U and V in Y such that $f(x)_{\alpha} \in U, f(y)_{\beta} \in V$ and $sCl(U)_{q}sCl(V)$. This implies that $x_{\alpha} \in f^{-1}(sCl(U)), y_{\beta} \in f^{-1}(sCl(V))$ and $f^{-1}(sCl(U))_{q}f^{-1}(sCl(V))$. Moreover, by Lemma 3.1 and Lemma 3.3, $f^{-1}(sCl(U))$ and $f^{-1}(sCl(V))$ are fuzzy open in X.

Now, assume that x = y and $\alpha < \beta$. Since f(x) = f(y), by (2) of Lemma 4.2, there exist two fuzzy semi-open sets U and V in Y such that $f(x)_{\alpha} \in U$, $f(y)_{\beta q}V$ and $sCl(U)_{q}sCl(V)$. Thus, we have $x_{\alpha} \in f^{-1}(sCl(U)), y_{\beta q}f^{-1}(sCl(V))$ and $f^{-1}(sCl(U))_{q}f^{-1}(sCl(V))$. Moreover, by Lemma 3.1 and Lemma 3.3, $f^{-1}(sCl(U))$ and $f^{-1}(sCl(V))$ are fuzzy open in X.

COROLLARY 4.4. Let $f: X \to Y$ be injective and fuzzy almost s-continuous. If Y is fuzzy semi- T_2 , so is X.

DEFINITION 4.5. ([1]) Two nonempty fuzzy sets A and B in X are said to be fuzzy separated [resp. fuzzy semi-separated] if $A_qCl(B)$ and $B_qCl(A)$ [resp. $A_qsCl(B)$ and $B_qsCl(A)$]. A fuzzy topological space which can not be expressed as the union of two fuzzy separated sets [resp. fuzzy semi-separated sets] is said to be fuzzy connected [resp. fuzzy semi-connected].

LEMMA 4.6. ([1]) Two nonempty fuzzy sets A and B are fuzzy semi-separated if and only if there exist two fuzzy semi-open sets U and V such that $A \leq U, B \leq V, A_qV$ and B_qU .

LEMMA 4.7. A fuzzy topological space X is not fuzzy semi-connected if and only if there exist two fuzzy semi-open sets U and V such that U_qV and $U \cup V = X$.

Proof. (\Leftarrow) Obvious.

(\Rightarrow) Assume that X is not fuzzy semi-connected. Then there exist two fuzzy semi-separated sets A and B in X such that $A \cup B = X$. By Lemma 4.6, it is possible to choose two fuzzy semi-open sets U and V such that $A \leq U$, $B \leq V$, A_qV and B_qU . We wish to show that A = U and B = V. Note that $B \leq 1 - A$ and $A \leq 1 - B$. Since $A \cup B = X$, we have that for any $x \in X$, either A(x) = 1 or A(x) = 0, and A(x) = 1 if and only if B(x) = 0. Assume that A(x) = 0. Then B(x) = 1. Since B_qU , We obtain U(x) = 0, and hence A = U. Similarly, we obtain B = V.

THEOREM 4.8. Let $f: X \to Y$ be surjective and fuzzy almost s-continuous. If X is fuzzy connected, then Y is fuzzy semi-connected.

Proof. Suppose to the contrary that Y is not fuzzy semi-connected. By Lemma 4.7, there exist two fuzzy semi-open sets U and V in Y such that U_qV and $U \cup V = Y$. This means that $f^{-1}(U)_qf^{-1}(V)$ and $f^{-1}(U) \cup f^{-1}(V) = X$. Moreover, U and V are fuzzy semi-regular in Y. By Lemma 3.3, $f^{-1}(U)$ and $f^{-1}(V)$ are fuzzy closed in X. This says that X is not fuzzy connected, contrary to the hypothesis. \square

Since every fuzzy semi-connected set is fuzzy connected, we have

COROLLARY 4.9. Let $f: X \to Y$ be surjective and fuzzy almost s-continuous. If X is fuzzy connected, so is Y.

References

- B. Ghosh, Semi-continuous and semi-closed mappings and semi-connectedness in fuzzy setting, Fuzzy Sets and Systems 35 (1990), 345–355.
- 2. T. Noiri, B. Ahmad and M. Khan, *Almost s-continuous functions*, Kyungpook Math. J **35** (1995), 311–322.

Department of Mathematics Education

Konkuk University Seoul 133-701, Korea