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A NOTE ON HARMONIC MAPPINGS

Suk Ho HongG

ABSTRACT. In this note, we study a relation between harmonic maps
and exponential harmonic maps, and we show existence of Yang-Mills
connections.

1. Introduction

The theory of harmonic maps and exponentially harmonic maps has
recently developed very much as we see excellent expository papers of
Eells and Lamaire [2].

In this paper we focus on the exponentially harmonic maps and ex-
ponentially Yang—Mills connections. It is well known that both theories
of harmonic maps and Yang—Mills connections have certain strong sim-
ilarities. We introduce and study another problem of calculus of vari-
ations in an analogous way as exponentially harmonic maps. Namely,
we define the exponential Yang—Mills connection and we show existence
of Yang—Mills connection and exponential Yang-Mills connection.

2. Main Results

Let (M,g) and (INV,h) be two compact Riemannian manifolds and
@ : M — N be a smooth map. Harmonic maps are extremals of the
energy functional

B(e) = [ eley

where e(p) = %|dp|* is the energy density and v, is the canonical
volume element. The map ¢ is harmonic if and only if it satisfies the
Euler-Lagrange equation

7(¢) = div(dyp) = 0.
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The existence problem for harmonic maps is the following; Given
two Riemannian manifolds (M, g), (IV,h) and a homotopy class H of
smooth maps from M to N, when is there a harmonic maps in H?
This problem has been studied extensively, and the answer depends on
the manifolds and the homotopy class. To obtain existence of solutions
in all dimensions without conditions on the manifolds, Eells-Lemaire
[2] considered another problem of calculus of variations. They defined
the exponential energy of ¢ as '

1
Bp) = [ exn(zldel vy

and say that a smooth extremal of E. an exponentially harmonic
maps.

PROPOSITION 1. [2] Let (M,g) and (N,h) be compact manifolds,
'H a homotopy class. Then H contains an E-minimizing map, which is
a—Holder continuous for all & < 1.

This can be verified using the properties of the Sobolev spaces of
maps from M to N, which are defined as follows. Choose a finite atlas
on M and Riemannian embedding of (IV, k) in some Euclidean space
V. Let LI(M,V) be the Sobolev space of L? functions from M to V

whose first partial derivatives are also LP. Then we set

LM, N) = {$ € L(M, V), $(x) € N a.e}
W= npzlﬁg(Ma N)a

and consider in W N'H a minimizing sequence (¢, ) for E. Since

B4 = [ Z (%0,

(¢n) is bounded in each L¥(M,N). Using the compactness of vari-
ous Sobolev embeddings and a diagonal argument, we deduce that a
subsequence converge weakly in each L, strongly in each £P, and
in C% for each @« < 1. In particular, the convergence is uniform
and the limit ¢ belongs to the homotopy class H. Convexity in P
of exp(|p|*/2) insure lower—semicontinuity of E for that convergence,
so that E(¢) < liminf (¢,), and ¢ is a C* minimizer.
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THEOREM 2. [1] If dim M > 3 for any homotopy class H, then there
exist a C* Riemannian metric § on M conformal to g and C'* map ¢
in H such that ¢ : (M, §) — (N, h) is harmonic.

THEOREM 3. [3] If dim M > 3, then there is a smooth metric §
conformally equivalent to g and a map ¢ € H such that ¢ : (M,§) —
(N, h) is exponentially harmonic.

We prove a relation between exponentially harmonic and harmonic
maps.

THEOREM 4. Ifdim M > 3 and ¢ : (M, §) — (N, h) is exponentially
harmonic, then there exists a smooth metric § conformally equivalent

to g such that ¢ : (M, §) — (N, h) is harmonic.

COROLLARY. Let ¢ : (M, g) — (N, h) be an exponentially harmonic
map which is constant on an open subset of M. Then ¢ is constant on

M. ‘

It is well-known that both theories of Yang—Mills connections and
harmonic maps have certain similarities. We introduce and study an-
other problem of calculus of variations in an analogous way as exponen-
tially harmonic maps. Namely, we define the exponential Yang-Mills
functional. Let (M, g) be a compact Riemannian manifold, and let E
be a G-vector bundle over M. Let C(E) be the space of all C* G-
connections of E. For V € C(E), let RV be its curvature tensor. The
Yang-Mills functional yM : C(E) — R is defined by

1
M) =5 [ IE I,

DEFINITION. The exponential Yang-Mills functional yM, : C(E) —
R is defined by

1
yMe(V)=f exp(gllellz)vg-
M

A critical point V € C(E) of the Yang-Mills functional yM is called
a Yang—Mills connection and a critical point of the exponential Yang-
Mills functional yM, is called an exponential Yang-Mills connection.
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THEOREM 5. Let (M,g) be an n-dimensional Riemannian mani-
fold, G a compact Lie group and E a G-vector bundle over M. As-
sume that n > 5. Then there exists a C*°® Riemannian metric § on
M conformal to ¢ and a C° G-connection V on E such that V is
Yang—Mills connection with respect to g.

PROOF. For a positive C®°—function f on M, put a new Riemannian
metric § on M by § = fg. We denote the subscripts ¢ and g for their
corresponding quantities. Then we get

[ IR Ivs = [ foOrR o,
For the Euler-Lagrange equation,
§YRY =0 if and only if 6, (f"~/2RY) =0,

where 6; : 5;7 are the formal adjoint of dV corresponding to § and ¢
respectively. Moreover, the functional

i
F(V) =3 [ 1+ IRTIPPr,

satisfies the Palais—Smale condition and attains a minimum if 2p >
dim M. Its Euler-Lagrange equation is given by

v v 2 v
8 (L +||RV|*)*~2/2RY) = 0. (1)

In fact, for A € Q'(gEg),

d d
FhoFy(V +t4) = Zleco [ (L4 IRTHARP A,

-2 /M(1 HIIRT|D)® D72 < d¥ 4, RV >, v,.

The equation (1) has a solution V for 2p > dim M. For the solution
V, defining
f = (L + R e-D /=

and § = fg, we obtain 6;? =0, so § and V are the desired ones. O
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PROPOSITION 6. The function f + log f/f? is a strictly increasing
function on the interval [1,+/e). Thus the inverse function f = ¥(y)
exists on the interval [0,1/2¢) and smooth.

PROOF. In fact, the derivative is

dy 1-2logf
ad
which is positive on the interval [1,4/e). O

PROPOSITION 7. Let (M, g) be an n—dimensional compact Riemann-
ian manifold, G a compact Lie group, and E a G—vector bundle over
M. Assume that n > 5 and V is a Yang—Mills connection. Then for
any € > 0, there exists a C*° Riemannian metric § on M which is
homotopic to ¢ such that V is Yang—Mills connection with respect to
§ and | RV < e. |

PROOF. For a positive constant C, put § = Cg. Then the Yang-
Mills equation for § is the same for g. Moreover, since ||[RY||2 =
C‘zllRVHg and M is compact, we get |RY||? < € if C is sufficiently
large. O

THEOREM 8. Let (M, g) be an n—-dimensional compact Riemannian
manifold, G a compact Lie group, and E a G—vector bundle over M.
Assume that n > 5 and V is a Yang—Mills connection. Then there
exists a C'*° Riemannian metric on M which is conformal to g such
that V is an exponential Yang—Mills connection with respect to g.

Proor. By Proposition 7, we may assume a Yang—Mills connection
V satisfies |[RV||? < € < n2—e4_ For a positive C* function f on M,
define § = f~1g. Then

§YRY =0 if and only if 65 (f*4/2RY) = 0.
Since ||RY||2 < =2, we can define the function f on M by

v (2
IRVl
n—4

=9 )>0



70 Suk Ho Hong

due to Proposition 6. Then it holds that

e IRV|IZ (.
finaz = (exp(n—g))( /2
||RVI| ||RV||
exp(f?——2) = exp(——2).
Then it holds that

V
55 (exp (” I )JRY) =0

which implies that V is an exponential Yang—Mills connection with
respect to g. O

From Theorem 5 and Theorem 8 we obtain the following result.

THEOREM 9. Let (M, g) be an n—dimensional compact Riemannian
manifold, G a compact Lie group, and E a G—-vector bundle over M.
Assume that n > 5. Then there exists a C*° Riemannian metric § on
M which is conformal to ¢ and a C*® G—connection V on E such that
V is an exponential Yang—Mills connection with respect to §.
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