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ASYMPTOTIC STABILITY OF COMPETING SPECIES

JUNE GI Kim

ABSTRACT. Large-time asymptotic behavior of the solutions of inter-
acting population reaction-diffusion systems are considered. Polyno-
mial stability was proved.

1. Introduction

In this paper we consider a system of two competing species with
Dirichlet boundary conditions. The system of equations are:

P 5

ﬂ —o01Auq = U1[a'+' fl(tau'lﬁuz)]?
(1.1) e i

_8; s O'ZAU2 = Ug[a + fQ(taulauz)]

for z € Q, t > 0. Here u;(z,t), ¢ = 1,2, represents the concentration
of two species at position # and time ¢. The parameters a, b, 01,0 are
positive constants, with @ and b representing growth rates when no in-
teraction occurs, o; and o, representing diffusion rates. The functions
fi : R? > R, 7 = 1,2 have Holder continuous partial derivatives up to
second order in compact sets. Further, we assume that

(1.2) fi(t,0,0) = f2(¢,0,0) = 0.

For (u1,us) in the first open quadrant, the first partial derivatives of
f1, fo satisfy:

(1.3) gi: <0 foreachi,j=1,2.
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We assume here that there are two functions fi, f2 such that
(1.4) |fi(tyur,ug) — filur,uz)] S K1 4+1)77, i=1,2

for some positive constants K and v and

(1.5) | < min | 5(®). | (0Fi/0ui)(t,T(2), Ts(z))
wt Gi(z) (8f;)0u;)(t, U (z), Ta(z))

for each z € Q,t >0, 1 # j, 1 <14,j < 2. Here @, i = 1,2, are the
equilibrium solution of (1.1). Concerning the stability of the equilib-
rium solution of (1.1) when the reaction functions f;(,u,uz), 1 = 1,2,
are independent of time we have the following result.

THEOREM 1.1([L]). Let (ui(z),u2(x)) be an equilibrium solution
to (1.1) when
fi(t,ul,ug) = fi(u1,uz), ¢ = 1,2. Suppose that the conditions (1.2)
and (1.3) hold and that
(1.6)
ui(x) (8f;/0ui)(ui(z), ua(z)) ui(z) (Ofi/0ui)(ui(z),uz(x))
uj(2) (0f;/0u;)(wi(z), uz()) uj(z) (0fi/Ou;)(ui(2), uz())

for eachz € Q, 1 <1, j <2, 1 # j, then (% (x),Uz(z)) is asymptoti-
cally stable. ‘

| < min |

Hence, it is our purpose to study the stability of the equilibrium
solution of (1.1) under the conditions stated above.

2. Main Result

We use the standard upper and lower solution methods( [L], [P]) to
prove the following stability result.

THEOREM 2.1. Let (Wi(z),u2(z)) be an equilibrium solution to
(1.1) under the following boundary conditions;

i(z,t) =0, t =1,2 forallt >0,z € ON.

Suppose that fi, f; satisfy the conditions (1.2)—(1.5). Then (u1,%3) is
asymptotically stable.
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PrOOF. Let
wa = (14 p(t))ua(x),
v = (1 = p(t))z1(z)
Then
5’(1)2 ~
E— — UZA’UJQ — ‘U)g[b -+ fg(f, Ul,wz)]
= p’ﬁz
— (1 + p(t)o2 AT — (1 + p(t)[b + fa(t,v1,w2)]
= p'us+

e P(t))(‘"azi\% — Ty fo (t,v1,w2))
=p'Us + (1 + p(t))(—02 AUz — Us fo(@1,W2)) —
(1 + p(t))@2[fa(t, v1,w2) — fa(W1,%2)]
= p'Uy+
(1 + p(&))@a[fa(t, v1,w2) — fo(T1, )]
= p'Uy+
(1 + p(t))@2[falt, v1, w2) — fo(t, W1, %))
— (1 + (1))@l fa(t, T, W) — fo(@, T2)]

> x (¢ — (1 p(0) p(0) Tl g2, o)+
(1+ 008)) ) Tl 322ty )

— (1 + p@)fa(t, 71, T2) — f2(T1,%2)])
At this point we choose p(t) to be
p(t) :=(14+1+¢)77) v <ec.
Then, since

|fa(t, W1, W) — fo(T1, W) < [ S K(1+1)7°

~
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We have
8'&1)2 F
W = O‘zsz — wz[b + fz(ta v11w2)] 2

(1077 X (=p(1+8)7 = [+ (L + )Tl 22 e, mo)l+

++(1+ t)‘“’]ﬁzl%(t, n1,m2)| — e[l + (1 +8)77](1 +£)7F7).

Therefore

8 2
% o U2Aw2 — wg[b+ fg(t,’U],w2)] 20

if
p + K
+(1+t)"7]  (L4t)e

"
m@)| G| 2 T n

8~
ﬁ1($)|a_£(t1ﬂ1a??2)‘

Similarly, we have

% e 0'1A'U1 — M [a + f](f, U],'LUQ)]
= 1+ T
e | [1 — (1 -I- t)—‘v]Aﬁ]_
—[1 -1+t Mwmfa+ fi(t,ve, wa)]
= (14 t) "7 () x (—7(1 + )7
e o sy B
1= AR L )
+ L= (14 (@) 5 i)
C K[+ (4877 + 1)),
Therefore
61)1

;- o1Av; —vifa+ fl(t,vl,wg)] >0
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5 K
-1+ T aQr0—
of:

U2

_ . 0f
ul(m)la—ul(ta n,n2)| 2 (141t)[
+ uz(w)I

Hence it suffices to find constant v satisfying the following two inequal-
ities;

uz(w)la 2t m,nz)|>7+c+m(m)| (t m1,7M2)|,

U1($)|*‘—(t M1,1M2)] >’Y+C+u2(33)| (f 71, n2],

which is possible if we can choose positive constants o and 3 such that

vt e <T@ e mm) - Lne) P mm),

¥, a
7+CSE1($)|ﬁ(taﬁlaﬁ2)|_%uz( )I fl

Hence we can choose a small positive number 4 provided we have
the inequalities (2.4). This completes the proof. 0O

(t ul,u2)|
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