Fe-EDTA 착물을 이용한 황화수소 제거의 최적 반응 조건

Optimum Conditions for Removal of Hydrogen Sulfide Using Fe-EDTA Complex

  • 투고 : 1995.10.17
  • 심사 : 1995.12.20
  • 발행 : 1996.02.12

초록

Fe-EDTA 착물을 이용한 황화수소 제거의 최적 반응 조건을 기포탑 반응기에서 조사하였다. 착물의 농도가 증가할수록 황화수소 산화 반응에서 전환량은 증가하였고 pH 변화와 Fe 농도는 완만하게 감소하였으며, elemental sulfur의 생성량은 증가하였다. 또한 황화수소는 0.05M 이상의 착물 농도에서 효율적으로 제거되었다. pH에 따른 황화수소 산화반응에서 pH는 착물의 안정도에 중요한 인자이고 반응 중 최적 pH 범위는 8.5~9.5 이었다. [EDTA]/[Fe] 비가 증가할수록 황화수소 산화 반응의 전환량은 증가하였고 반응 중 EDTA 농도가 감소하면 FeS로 침전이 촉진되어 전환량은 감소하였다. 즉 EDTA 농도가 증가될수록 Fe-EDTA 착물이 안정되어 전환량이 증가하였다.

The optimum conditions for the removal of hydrogen sulfide by Fe-EDTA complex in the bubble column reactor were investigated. As the concentrations of the complex increased, the conversion rate of hydrogen sulfide increased, while Fe concentration and pH were stably decreased and the amount of elemental sulfur produced was also increased. Hydrogen sulfide was removed efficiently when the concentration of Fe-EDTA complex was maintained more than 0.05M. pH acts as an important factor for the stability of complex in the oxidation of hydrogen sulfide and optimum pH range was 8.5~9.5. As the molar ratio of EDTA : Fe was increased, the conversion rate of hydrogen sulfide became stable. However, the rate was decreased due to the precipitation of FeS when the concentration of EDTA was decreased. As the concentration of EDTA increased, the conversion rate of hydrogen sulfide increased due to the high stability of Fe-EDTA complex.

키워드

과제정보

연구 과제 주관 기관 : 조선대학교

참고문헌

  1. Ind. Eng. Chem. v.23 R. H. Borgwardt;N. F. Roache
  2. Chem. Eng. v.11 L. C. Hardison
  3. U. K. Ltd. Ger., 1,091,696 W. Hartley;R. S. Craig;R. h. Sapiro
  4. AIChE. v.36 S. Asai;Y. Konish;T. Yabu
  5. J. Am. Chem. Soc. v.67 R. L. Gustafson;A. E. Martell
  6. Chem. Eng. Sci. v.30 H. Hikita
  7. Ind. Eng. Chem. Res. v.32 H. J. Wubs;A. A. C. M. Beenackers
  8. AIChE. v.40 H. J. Wubs;A. A. C. M. Beenackers
  9. Electroanal. Chem. v.22 E.R. Brown;J. D. Mazzarellea
  10. Ind. Eng. Chem. Res. v.26 E. Sada;H. Kumazawa;M. Hiroshi
  11. Chem. Eng. Sci. v.43 A. Mehra;M. M. Sharma
  12. Inorg. Chem. v.27 N. H. Clark;A. E. Martell
  13. J. Am. Chem. Soc. v.82 D. T. Sawyer;J. M. Mckinnie
  14. Plenum Press New York v.1 Critical Stability Constnats A. E. Martell;R. M. Smith
  15. ARI Technologies. Inc. , Palatins, Ⅲ L. C. Mardison;D. E.Rawshaw
  16. J. Am. Chem. Soc. v.105 C. Bull;G. J. McClune;J. A. Fee
  17. J. Am. Chem. Soc. v.99 G. J. McClune;J. A. Fee;J. A. McCluskey;J. T. Groves
  18. Arch. Biochem. Biophys. v.218 J. Butler;B. Halliwell
  19. Biochem. Biophys. Acta v.498 Y. A. Ilan;C. Czapski
  20. FEBS Lett. v.158 G. R. Buettner;T. P. Doherty;L. K. Patterson
  21. Inorg. Chem. v.24 J. P. Fackler;F. J. Kristine;A. M. Mazany;T. J. Moyer;R. E. Shepherd
  22. J. of KSEE. v.15 I. W. Lee
  23. J. of KSEE. v.17 J. M. Cha;G. S. Cha;I. W. Lee
  24. Z. Chem. v.26 S. Koch;G. Ackermann;K. Schuller
  25. J. Am. Chem. Soc. v.90 H. J. Schugar;A. T. Hubbard;F. C. Anson;H. B. Gray