Layer Growth Rate of Benzene Layer from Benzene-Cyclohexane Mixtures in Layer Crystallizer

경막 결정화기에서 벤젠-시클로헥산 혼합물로부터 벤젠의 결정성장속도

  • 김광주 (한국화학연구소 화학공학연구부) ;
  • 이정민 (한국화학연구소 화학공학연구부) ;
  • 유승곤 (충남대학교 공과대학 화학공학과)
  • Received : 1995.10.31
  • Accepted : 1996.03.13
  • Published : 1996.04.10

Abstract

The crystal growth rate of benzene from benzene-cyclohexane mixtures at a cylindrical layer crystallizer was determined from the slope of the line of correlation between operating time and layer thickness. The thickness of crystal layer was obtained from the amount of crystal deposited on the cooled wall surface of the crystallizer. The crystal growth rate was related with the degree of subcooling, which was defined as the difference between temperature of melt and that of growing crystal surface. The linear crystal growth rate for binary mixtures was proportional to the second power of the degree of subcooling. Equation model which was obtained from data through the rate of heat and mass transfer in the crystallizer and thus can tell crystal thickness and surface temperature of crystal layer according to the elapsed time was presented and successfully correlated to the experimental data. For the benzene-cyclohexane mixtures contains 5wt% and 10wt% of cyclohexane, the comparison of experimental data with calculation using model equation was done for crystal thickness corresponding to the various cooling temperatures.

경막형 결정화기에서 벤젠-시클로헥산 혼합물로부터 벤젠의 결정성장속도가 조사되었다. 결정성장속도는 경막결정화기의 냉각벽에 부착되는 결정의 양으로부터 얻어진 결정두께와 시간에 대한 상관관계식으로부터 결정되었다. 결정성장속도와 결정의 표면온도와, 용융액의 온도의 차로 정의되는 과냉각정도와의 상관관계가 얻어졌다. 이 이성분 공융계에 대한 결정성장속도는 과냉각정도의 2승에 비례하였다. 경막결정화기의 열전달 및 물질전달 속도에 근거하여 결정의 표면온도 및 결정두께를 예측할 수 있는 모델식이 제시되었다. 5wt% 및 10wt%의 시클로헥산을 포함한 벤젠-시클로헥산 혼합물에 대하여 여러 다른 냉각온도에서 실험적으로 얻어진 결정두께의 자료와 모델식으로 계산된 결과가 비교되었다.

Keywords

References

  1. Kagaku Kogaku Ronbunshu v.12 Y. Yamazaki;Y. Watanuma;Y. Enomoto;K. Toyokura
  2. Zone Melting H. Schildnecht
  3. Int. Chem. Eng. v.34 K. Wintermantal;G. Wellinghoff
  4. Tech. Rev. S. T. Jancis
  5. AIChE J. v.10 J. C. Charty;H. A. Ohren
  6. Chem. Ing. Tech. v.51 G. Matz
  7. Chem. Ing. Tech. v.65 I. Hunken;J. Ulrich
  8. Proc. 12th Symp. Ind, Cryst. v.1 R. Schalz;J. Ulrich;K.Genthner;E. H. Rokowski(ed.)
  9. Proc. 12th Symp. Ind, Cryst. v.1 C. Delannoy;J. Ulrich;M. Fanconet;E. H. Rokowski(ed.)
  10. Proc. 12th Symp. Ind, Cryst. J. Ulrich;Ozoguz.;A. Mersmann(ed.)
  11. Proc. 12th Symp. Ind, Cryst. v.1 M. Neumann;J. K. Ulrich;E. H. Rokowski(ed.)
  12. Proc. 12th Symp. Ind, Cryst. v.1 M. Poschmann;J. Ulrich;E. H. Rokowski(ed.)
  13. Chem. Eng. Sci. v.46 M. Matsuoka;J. Garside
  14. AIChE J. v.16 W. C. Gates
  15. Transport Phenomena R. S. Brodkey;H. C. Hershey
  16. Ph. D. dissertation, Univ. of Virginia J. C. Charty
  17. Ph. D. dissertation, Univ. of Michigan R. Arnold
  18. Proc. 12th Symp. Ind, Cryst. v.1 M. Matsuoka;E. H. Rokowski(ed.)
  19. J. Crystal Growth v.37 R. P. Rastogi