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An Analysis of the Behavior of Correlated
Arrival Queues
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Abstract

In this research, we concentrate on the effects of dependencies in arrival processes
on queveing measures. In particular, we use a specific form of arrival process which
has the advantage of allowing us to change dependency properties without at the
same fime changing one dimensional distributional conditions.

I# is shown that the mean queve lengfh can be made arbitrarily large with the same
interarrival distributions and the same service time distributions with fixed smaller than

one traffic intensity,

1 Introduction

Nonrenewal! arrival processes are common, for example, in manufacturing sys-
tems, where simplifying independence assumptions can lead to very poor esti-
mates of performance measures. Little is known regarding the queues with a
nonrenewal input, because of loss in analytical tractability.

Two prototypes of non-renewal arrival processes are double stochastic Poisson
(DSP) and Markov renewal (MR) processes. Some basic results on MR arrival
queues are contained in Cinlar (1967) and Neuts (1981}, where a transform type
analysis is carried out; a summary of résults around DSP arrival processes can
be found in Rolski (1989), where a stress on stochastic comparison was placed.
Another approach was introduced by Livny et.al. (1993), for simulation purposes.

The present paper is directly related to Patuwo et al. (1993), and Szekli et
al. (1994a,1994b), where the question of how dependencies in the arrival process
influence the performance measures of MR/GI/1 queues was considered. We
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mtroduce a special type of MR arrival processes, which is flexible enough to
see how the lag-r correlation for the arrival process can be changed by different
parameters, but which guarantees that the one dimensional distributions of the
interarrival sequence remain the same after these changes.

2 Structure of the Model and Comparison Re-
sults

We consider the MR/GI/1 queue for a FCFS queue with a Markov renewal
(MR) arrival process, which we defirie as follows. Consider a sequence of arrays
of independent positive random variables X' = {[Xi(f)]f-izh k=1,2---}. For
each i, ] the sequence {X{), k =1,2,---} is iid. with a common distribution
function Fi;. Let 2 = {Zy,Z;,---} be a Markov chain with the state space
{1,2,-- -}, transition probabilities

G,;.,' = P(Zk =j | Zk—l == t), k 2 1, (1)

and an initial distribution a; = P(Zy = ¢). We assume that Z is irreducible,
positive recurrent, and independent of X. We denote by = = {m;, i = 1,2,---}
the unique invariant probability measure for Z.

Definition 2.1 The arrival process with interpoint distances D) = X{Z’:)_hzk, k=
1,2,---, is ¢ Markov renewal (MR) arrival process.

In a Markov renewal arrival process there are many types of arriving cus-
tomers. Successive arrival types form a Markov chain and their interarrival times
depend on the arrival types.

The distribution of the arrival process D = {Dy, Dy,...} is uniquely deter-
mined by the initial distribution a = {a;}, the transition matrix A = {a;;}, and
the set of distribution functions F = {F;;}. We denote this triple by {a, A, F].
The corresponding semi-Markov kernel is A(f) = {a;; Fi;{t)}. We assume a spe-
cial form of the transition matrix for the governing Markov chain

p n—1 n=-1
An(P)= . . .. n: 3 (2)
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where n > 2, p € (0,1), and, for simplicity, F;; depends only on j.
Consider a MR arrival process represented by [ar, A,(p)6, F] where = is the steady
state distribution of the Markov chain (2). Then m = le and the marginal
distribution for the stationary interarrival time, P(Dy <), k=1,2,... is given
by

P(Dy < t) = nA(t)e = %Z R(),

i=1

which is independent of p.
The parameter p € (1,1) plays the main operational role in our study of effects
caused by the correlations in D, on the performance of MR queues. We adopt
the above MR arrival process [, A,(p)6,F} because we can pull out the pure
effect of correlation in teh arrival process on the queueby changing p as shown
below.

In Szekli et al.(1994a) it is shown that the lag-r correlation coefficient of the
arrival process is given by

2 icj (mi —m;)’ (ﬂp— 1)"

corry(r) = -

(3)

% o Uit ,,JT Li<j (m; — m:‘)2
where m; = [z dFi(z) and v; = [z (z — m)?dF(z) fori = 1,2, ,n.

Thus we can increase correlations in D, by increasing p while we keep the marginal
interarrival distribution P(Dj < t) the same.

In general the presence of positive correlations in D, results in more variable
waiting times. Szekli et al.(1994b) showed this by comparing queues: the MR
arrival processes [mw, An(1),F] (Dy, ii.d., no correlations), [x, A.(p),F], p €

1'1) (associated D,) and [m, A,(1), F}.

For a stationary ergodic MR/GI/1 queue with the MR arrival process given
by [m, An(p), F], ii.d sequence of service times {5,}, and ES,/ED,; < 1, denote
by W, the stationary actual waiting time in this queue. Note that the traffic
intensity p = ES;/ED; does not depend on p in this class of queues. -

Theorem 2.2 (Szekls et al.(1994b)) Consider three stationary ergodic MR/GI/!
gqueues {p < 1) with the intererrival processes represented by [w, An(2), F], 7, A.(p), F)
(p €(%,1)), and [x, A,(1),F]|, respectively. Then

EW. < EW, < EW,.
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3 Role of p and m; — m;

We restrict now our attention to MR/M/1 queues with the arrival stream [=, A,(p), FJ.
This two dimensional setting allows us to find a closed form for expectation of
the stationary queue length embedded at the arrival times.

Let the semi-Markov kemel be

~ () (1-pF&@)
Aft) = (1fp)F1(t) p;;(t) ’

where Fi(t) = 1 —e™™* ¢ = 1,2, £ > 0. Suppose that the service time is
exponentially distributed with the rate u. The “individual” traffic intensities are
p1= A/, and pg = Xa/p.

For this setting, we have two types of arrival customers. The successive arrival
types form a Markov chain

A(t)=[1fp 1;?],

and the interarrival time distribution when the arriving customer is of type 1,
i=1,2, is F.

The traffic intensity for the system is the harmonic mean of the individual
traffic intensities p = {%(i + i)}_l. We assume that p < 1. Then it is shown
in Szekli et al.(1994b) that L', the mean queue length at arbitrary times in the
steady state, becomes

t_ P p _1-FR)
L_1~p+2(1—p)(1—p)(1 p1+pz)' @)

From the above result we obtain the following important theorem, whose proof
can be found in Szekli et al.(1994b)

Theorem 3.1 Consider a stationary MR/M/! queue with the arrival process
|7, Ax(p), F] end p < 1. If the arithmetic mean (p; + p2)/2 > 1 then

L' 5ccasp— 1.

Remark. The first term p/(1 — p) in the formulas in (4) is the mean stationary
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queue length of M/M/1 queue. Thus, we see the second term is due to the
dependency in the arrival stream.

Theorem 3.1 shows the queue length can be infinitely large even if p < 1 in a
correlated arrival case.

Now we explain the queueing behavior in terms of m; —m, and p by the following
corollaries of Theorem 3.1.

Corollary 3.2 If the difference of two means m; and m, is great enough, then
ILtscasp— 1.

Proof. Without loss of generality, we hereafter assume mz; — m; > 0. Since
2

ED, = m = Y(my +m,) and p = 1/(yED,.), we have my + ma =
Now, the condition (p1 + p2)/2 >.1 in Theorem 3.1 is equivalent to -ﬂ—:;- + mLz > 2u

and in turn,
m1+mg_ 1 2 1

24 pp  wp
Then my = ( + d) and m; = 3 (% - ) So (5) becomes

() - dﬂ)ﬁ

Rearranging both sides yields d* > —5— 1i_ 1 . Since d > 0,

g ~—1 —2mp ——1 =2m+fl—p=c. (6)

mgq — my =d > ¢ is equivalent to (p1 + p2)/2 > 1, which completes the proof. O

(5)

mymy <<

Corollary 3.3 When the difference my—my is small enough, the queue 13 stable.
Proof. Assuming my > my, we have
0<m1<m<mg<2m. (7)

There is no chance for the mean queue length to be infinitely large if p; < 1 and
po < 1, that is,
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my > mp, mg > mp. (8)

Combining (8) with (7) we have mp < m; < m < m; < 2m, which, in terms of
mgz — my, becomes 0 < m; —my < (2m —mp) — mp = 2m(1 - p) = ¢. a

We give some numerical examples to make the above interpretation clear.

Example 1. In this example we illustrate the joint effect of m; — m,; and p and
see how the critical and safety regions move as the traffic intensity varies.

We fix the mean value m of the marginal interarrival times to be 5. Recall that
m = 1/2(m; + my). Since m; + m, = 10 and we assume m; > my, 5 < my < 10
and 0 < my; < 5.

Then ¢ = 2m+/T—p =10/T — p and ¢ = 2m(1 — p) = 10(1 — p).

For the traffic intensities p = 0.1, 0.5, 0.9, we give different values of m, —m,
and compute L, the mean queue length at arbitrary times. Figures 1 to 3 show
the behavior of L' versus p which varies from 0.5 to 1.0 (We plot only the range
of p from 6.75 to 1.0 to make the graph more clear).

Forp=01,c=949and ¢’ = 9. Thus under light traffic intensity, the queue
stays stable for most of the possible m; and m, values (see Figure 1).

For moderate traffic intensity p = 0.5, ¢ = 7.07 and ¢’ = 5. (see Figure 2).

6
5 B
m2-m1=949
4 N
43
2 ;
[ m2-m1-8.98 ;
1" ;
Ly
845 Y 0.85 05 095 ;

Figure 1: The behavior of L* vs. p (p = 0.1)
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Now under a heavy traffic intensity p = 0.9, ¢ = 3.16 and ¢ = 1. (Figure 3).
'Thus, we conclude that under heavy traffic, we have more chance for the queue

length to be arbitrarily large, while under light traffic, the queue tends to be
stable.

100

90-

804 '

70 m2"m1-7.07 e R
60.

550 .
40 ;
20- m2-m1=498 |
10-

875 0.3 0.85 0.9 0.95 |
F4
Figure 2: The behavior of L* vs. p (p = 0.5)
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Figure 3: The behavior of L! vs. p (p = 0.9)
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4 Change of Variability

In the previous Section 3, we showed that the increase of the correlation coeffi-
cient in the arrival process via the parameter p, jointly with m,—m,, the distance
between mean values, can make the queue quite unstable. However, we may in-
crease the correlation coefficient by reducing the variances of the Fj’s, which gives
a different result. The following lemma is a direct application of Rolski(1983) to
our A.(p).

Lemma 4.1 Consider two MRAPs [w,A.(p),F} and [rr, A.(p),F'] o a single
server quetcing sysitem, where Fj <icx F| and the ezpected value of K and Fj are
equal for j = 1,...,n. Then for the corresponding correlation coefficients and
stationary actual waiting times we have

Corr[‘)r,A,F] > Corrm, A, F'],

while

EW[r,A,F| < EW[r, A, F].

Proof. The second part of the lemma is immediate from Rolski(1983).

The variance of Fj is smaller than that of F by assumption F; <. F;i. Recalling
that the formula for correlation coefficient (3), since each correlation coefficient
has the sum of variances of F}'s, Yi, v;, in its denominator, the first part of the
lemma follows. O

The Lemma 4.1 tells us that a larger correlation coeflicient in the arrival pro-
cess does not necessarily cause a larger mean queue length. This happens when
we change the correlation coefficient by changing the variances of the interarrival
times, which is analogous to the Pollaczek-Khintchine formula.

Example 2. In this example, noting that the variance of Ex(k, &) decreases as
k increases when we keep ) fixed, we illustrate Lemma 4.1 that the correlation
coefficient can increase while the mean queue length decreases.

Consider a two-state (n = 2) MRAP of which the transition matrix of the
underlying Markov chain is given by:
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0.85 0.15
A= ( 0.15 0.85 ) ’

i.e., p= 0.85. Let F, = Er(k,1/3) and F; = Er(k,1/7) and the traffic intensity
is p = 0.5. Then the lag-1 correlation coefficient is

-3)? 2-0.85-1 11.2&
Corr — (7-3) ( 0 ) 2

72134 (7T—32 \ 2-1 J 16k+ 116’

which is increasing and concave in k. Since for & < k', we have Er(¥,1/3) <,
Er(k,1/3) and Ex(k',1/7) <i Ex(k,1/7), EW (k) < EW(k') by Rolski(1983). By
Little’s result, L{(k) < LY(k'), that is, Lf decreases in k, as Figure 4 illustrates.
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Figure 4: The behavior of L* and Corr vs. &

5 Summary and Results

In this research we have considered correlated arrival queueing systems to see
the effect of this correlation on the queueing performance. We introduced a
special structure of a Markov renewal arrival process whose transition matrix
of underlying Markov chain is A,(p). This guarantees the marginal interarrival
time distributions are the same.

The effect of p, the jump intensity from one type to another, becomes dramatic
when combined with the magnitude of m;—m;, the differences of the means of the
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interarrival times of different types. Even though the solution is case specific, it
is enough to draw important interpretation. When the difference m; —m,; is large
enough and p increases to one (or, the correlation coefficient grows through p) the
queue length becomes arbitrarily large even though the overall traffic intensity
is smaller than one (so the queue is said to be stable). This is because once the
arriving customer is of type 1 (a heavy traffic state) then the successive arrivals
tend to be of the same type, and the heavy traffic state during the arrival of type
1 customers dominates the queue length. The low iraffic state during the arrival
of type 2 customers cannot return the queue to be stable. We conclude from
this observation that the high correlation coefficient via high p may yield a very
significant effect. This result allows us to construct examples for which the mean
queue length of the correlated arrivals can be arbitrarily many times larger than
the corresponding uncorrelated arrival queue.

A larger correlation coefficient, however, does not necessarily imply larger
queue length, as we have shown in Section 4 through our A,(p) structure. The
iarger correlation coefficient obtained by making the variance v;, the variance
of interarrival times for each type smaller causes a smaller queue length. I we
interpret the variance as a measure of uncertainty, then our result says that by
reducing the uncertainty in the arrival stream we can obtain a smaller queue
length.
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