Journal of the Korean Inskitute
of Industrial Enginaers
Yol22, No.l, March, 1996

B33} PR YABA
3 g

Development and Comparisons of Hybrid and Failure-Free Peried

Acceptance Sampling Plans for Gamma Lifetime Distributions

LR D i
Hyun-Seok Jeong®, Jung-Won Park**, Bong-Jin Yum**

Abstract

In this paper, we develop two replacement-type reliability acceptance sampling plans
[RASPs) for the gammao lifetime distribution assuming that the shape parameter is known.
The two plans are respectively based upon failure-free period and hybrid life tests.
We then compare the plans in terms of expected test fime to reach a decision, power,
etc. Computational results indicate among others that the failure-free period RASP has
a shorfer expected completion time than the corresponding hybrid RASP when the true
scale porometer is ‘large’. Finally, sensitivity analyses reveal that the effects of the
uncertainties involved in the assumed shope parameter on the producer and the consumer
risks are in favorable directions for both parties for both types of plans,

1. Introduction

A reliability acceprance sampling plan{RASP}
consists of a set of life test procedures and
wules for either accepting or rejecting the item
{s) on test based upon the sampled lifetime

data, While RASPs for the exponential lifetime
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distribution have been extensively developed in
the literature[1, 4, 5, 6, 8], little work has
been done for the gamma lifetme distribution,
One exception is Gupta and Groll[9] in which
a non-replacement type RASP is developed
under hybrid censoring.

A gamma lifetime distribution may arise if
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an item subject to a given environment fails
only when it has expetienced k shocks which
occur at a Poisson rate]3]. According to
Kitagawa[11], some pressure valves or
switches possess such a property, The gamma
distribution was also derived by Bitnbaum and
Sannders{2] as one of the statistical models
for the life-length of materials. An example in
their article shows that the lifetime of a certain
type of aluminum strips can be adequately
described by a gamma distribution, Wilk et al,
{13] also describe the lifetimes of a certain
type of transistors using a gamma distribution.

Recently, Angus ¢ al.[1] proposed a replace-
ment type RASP(for the exponential lifetime
distribution) in which the item on test is
accepted only if a specified length of failure-
free period is observed before a specified
number of failures occur, and showed that it
hzs smaller expected test time than the time-
truncated replacement test(i.e., replacement test
urider hybrid censoting) when the true mean
lifetime is large relative to the wvalue specified
in the null hypothesis. In this article, we
develop a similar RASP for the gamma lifetime
distribution to test the hypotheses on the scale
parameter with the shape parameter assumed
known, We also develop an RASP under the
assumptions of hybtid censoring and replace-
ment for the gamma lifetime distribution, The
hybrid censoring scheme was first proposed by
Epstein[5] for the exponential distribution,
The two plans are tabulated for various

ccmbinations of parameters and compared in

terms of expected number of failed items,
expected test time required to reach a decision,
and power,

For the RASPs developed in this article to
be operational, we need information on the
shape parameter of a gamma distribution,
which may be obtained from the historical data
on a vatiety of similar products, engineering
knowlegde, expetience, etc, If this is not
feasible, a preliminary test could be conducted
to estimate the shape parameter, In Section 6,
sensitivities of the producer’s and the consumer’
s risks to the uncertainties involved in the
shape parameter are also evaluated for both

plans_
2. Preliminaries

Notation and Acronyms
@ scale parameter of a gamma distribution,
6. 8 specified values of the scale patame-
ter under Hy and H,, respectively.
k  shape parameter of a gamma distribution
{assumed known),
X random variable which denotes the life-
time of a test item,
g(x:9, k) probability density function of a
gamma random variable X,
G{x:9, k) cumulative distribution function
of a gamma random variable X,
¥y preassigned number of failures for 2
faiture-free period RASP.
¥ preassigned number of failures for 2
hybtid RASP.
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t; prespecified failure-free period,

¢, censoring time for a hybrid RASP,

N(¢) number of failures at or before time

i

R random wvariable which denotes the
number of failures until a decision can
be reached.

W random vatiable which denotes the time
to reach a decision,

Ee(R ) expected value of B when the value

of the scale parameter is g,
Ee(W) expected value of W when the

value of the scale parameter is §.

L(g) operating characteristic function of 4.

OC operating characteristic,

pdf probability density function.

cdf cumuladve distribution function,

pmf probability mass function.

RASP teliability acceptance sampling plan,

In the above, all the time-related wvariables
ard parametets are standardized ones with
tespect to the specified value of the original

scale paramcter under Ho.

Assumptions

(1) The lifetimes of test items are indepen-
dent and follow a gamma distribution,

{2) Each failed item is replaced by or

repaired as a new one,

Hypothesis Test
Suppose that the lifetime of a test item

follows a gamma distribution with pdf:

[IAT(R) (@) ] () e ™17;
g(x78,%) = 120, )0, @0

0, otherwsse.
For a hybrid or 2 failure-free period life test,

an jtem is drawn at random from the above
population and placed on test at time Q. In 2
hybrid life test, the test item failed before a
prespecified censoring time or before a prespec-
ified number of failures occur is replaced by
or repaired as a new one, If a failure-free
period life test is employed, the item failed
before a failure-free period is reached is also
restoted to a new working condition either by
repait or replacement, Then, based upon the
failure data from =z life test we want to test
the following hypotheses on the scale parameter

¢, with shape parameter % assumed known.

Hy: ¢=6&
H:¢=¢({#) (2.1)

where ¢, and @) are prespecified. Since the
mean of a gamma disttibution is proportional
to g - {with £ assumed known), the above
test is equivalent to the test on the mean
lifetime.

For simplicity, we employ the following

transformation 1
a=e " [ &%

Under the above transformation, (2.1) is

reduced to -
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Hy:9=8(=1)
H :g=0=0/g:1). {2.2)

All the variables and parameters related to
time are also standardized with respect to §,.
For instance, X=X"{ g, tj=t’f/9’o, efc. From
now on, the time-rclated vatiables and param-
eters are assumed to be standardized and used

without a prime,

3. RASP Under Failure-Free Period
Life Test

Development of RASP

Under a failure-free period life test, Hy is
accepted if and only if & failure-free period of
iength ¢ is obtained before 7, failures occur
{rf= 1,2,-++). That is, if the number of failures
prior to achieving a failure-free period i is less
chan or equal to rf-l, H, is accepted, If we
zegard the event that a failure-free period of
i is achieved as a ‘success’, then the number
of “failures’ prior to a success can be described
5y a geometric distribution with success

arobability :

Pa SI g(x;g, k)dx
f

= 1-G{iya,k).

Then, L(g) for the test (2.2) is given by
L{g)=PlacceptH,| g) = E:f;lu]ba(l—pg)’

=1—(1—p,)"

We want 1o find ] and tf such that the
producer’s and the consumer's risks are satis-

fied, That is,

L)=1-(1—p)"=1—a (3.1)
L(6)=1—(1—p,)"= 8. (32)

where p=p, when g=@=1 and Po, =Py
when g=g.

Egs, (3.1) and (3.2) can be solved iterative-
ly for 4 and 7 given @ and B, although it is
not generaily possible to satisfy both equations
exactly due to the discreteness of 7, Therefore,
the smallest #; and the corresponding f; are
determined such that L(1)=1—a and L(4)
= fB. The corresponding procedures are as
follows.

Step 1. Specify @, 8, k and 8.

Step 2. Set the initial value of 7; equal to

16.

Step 3. Determine # such thar (31} is
satisfied. If (tf, rf) satisfy the consu-
mer’s risk, go to Step 5. Otherwise,
go to Step 4.

Step 4. Set r;=7,+10 and go to Step 3.

Step 5. Set 7,=7,-9,

Step 6. Determine ¢; such that (31) is
satisfied. If (tf,rf) satisfy the consu-
met’s tisk, stop. The desired (rf,rf)
are found. Otherwise, go to Step 7.

Step 7. Set #;=7,+1 and go to Step 6.

Values of I in Steps 3 and 6 can be

determined by a numerical search technique.
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We used the bisection method[11] utilizing the
fact that L(g) is a decreasing function of .
The cdf of a gamma random variable was
evaluated using IMSL{10] subroutine DGAMDF.
The above procedure was programmed in MS
Fortran, and run on a 32-bit personal comput-
et in double precision. Plans are presented in
Table 3.1 for the following combinations of

parameters,

a=001, 0.05, 0.10

£=0.01, 0.05, 0.10 (3.3)
k=12, 2.0, 3.0, 4.0, 5.0, 10.0

6=1/2, 1/3, 1/5

The computing time varies from plan to plan
with the maximum being 9 sec. for the case
where a=001, #=0.01, £=1/2, and §,=1/2.

From Table 3.1, we observe the following,
First, as the consumer’s and the producer’s
risks increase, 7 and ¢ decrease. Second, as the
discrimination ratio §{=@./¢) decreases, 7
and f; also decrease. Finally, as the shape
parameter increases, #; decreases while

mereases.

Related Performance Measures

The waiting time to reach an acceptance of
H; is a random variable W which is equal to
t; if no failure occurs before a failure-free
period of #; and is equal to (X;+---+Xi-+tf)
if i(liiﬁ?’f—l) failures (with X‘-(tf) occur
before a failure-free period of 4. Similary, the

waiting time W to reach a tejection of Hj is

given by {X1+---+X,!) where all X’s are less
than #. To calculate EG( W), we need to
determine the truncated mean lifetime of X, It

is shown in Appendix that

#y = E (X X8}
= kgG(t; 9.6 +1) /Gt 8%). (34)

Let A; be the event that i(lSiSrf*l)
failures (with X"<t)r) occut before a failure-free
petiod of i, and B be the event that 7, failures
occar with all X,-'s(s’=1,2,---,rf) less than £,
Then, Eg( W) is given by

E(W)=S1E{W]|4,)P(4)+E,(W|B)P(B)
=St (=t g a1 (35)

Let R be the number of failures until a
decision {either accepting or rejecting Hy) is

reached. Then, it is shown in Appendix that
E,R) ={(1—p)ip1—(1—p,)5. (36)
4, RASP Under Hybrid Life Test

Development of RASP

In a hybrid life test with replacement, a test
item is placed on test at time () and failed items
are replaced by or repaired as a new one at
once, The decision rule for a hybrid RASP is
to reject Hy if 7, failures are observed before
i, and accept H,, otherwise. Values of 7; and
t, are determined such that the producer’s and

the consumer’s risks are satisfied,
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Table 3.1. RASPs under failure-free period life test.

a B 8 k 0.5 2.0 3.0 ' 4.0 5.0 10.0
1
0.0 0.01 1/2 | 7237 5828®| 517 6766 | 205 7.5375 | 107 8.000 65 8.625 15  11.750
1/3 | 264 2828 33 a5 17 4000 11 4,500 g8 5000 3 7.375
1/5 46 1.375 8 1875 5 2250 3 2344 3 3156 1 4,125
0.05 1/2 (1236 4203 | 121 5004 59 5719 34 6281 23 ©.875 7 8.750
1/3 | 103 2031 16 2688 9 3.004 6 3.500 5 4125 2 6.188
1/5 26 0969 5 1359 3 1544 3 234 2 2406 1 4.125
010 | 172 1 563 3.500 66 4375 34 499 21 5531 15 86.125 5 8.875
1/3 65 1.656 11 2.250 7 2719 5 3188 4 3.688 2 6.188
1/5 20 Q797 4 1125 3 1594 2 1719 2 2406 1 4125
0.05 0.01 172 12021 5391 | 226 6.320 95 6938 51 7547 32 8.188 8 11.250
1/3 | 134 2617 17 3.273 g 3™ 6 4.203 5 4938 2 7.500
1/5 26 1.254 5 1.836 3 2164 2 2406 2 3219 1 5.406
0.05 1/2 | 493 3.766 54 4548 27  5.250 16 5.789 11 6.367 4 9.453
173 51 1809 9 2518 5 2875 4 3.539 3 3984 1 5.408
1/5 14 0848 3 1281 2 1625 2 2406 1 1.969 1 5.406
0.10 1/2 | 222 3085 29 3.906 15 4.430 10 5038 7 5585 3 8.656
13 32 144 6 2.047 4 2583 3 3.083 2 3219 1 5.406
1/5 11 0891 3 t2m 2 1625 1 1359 1 1969 1 5406
0.10 0.01 /2 [1691 5129 | 137 6.047 59 £.656 33 r.297 21 7922 6 11.203
113 89 2.492 12 3172 TAn 4 3877 3 4477 2 8.250
1/5 18  1.207 4 1883 2 1.969 2 283 T 2430 1 6.219
005 | 1/2 | 284 3.508 33 4375 17 4973 11 5609 7 603 I B
1/3 33 1672 6 2352 4 28934 3 3500 2 3 1 6.219
1/8 10 0.801 2 1141 2 1869 1 1.742 1 2430 1 6.219
0.10 172 | 127 2797 18 3.656 10 4234 6 48641 5 5422 2 8.250
1/3 21 1.320 41 1883 3 2527 2 2836 2 3M 1 6.219
1/5 8 0.660 2 114 T 1102 1 1742 1 2430 1 6.219
k:shape parameter  a:number of failures{ry}  b:failure-free period(ls)
L{#) for a hybrid RASP can be determined parameter 9. We note that
as follows. Let N{i} denote the number of
failures at or before time ¢ and Xj(j=l,2,---) P(N(t)=i)eP(§,5t).
denote the jth failure time. Since S‘-=E;:=1X}-
is ¢-convolution of X, S; follows a gamma Therefore, the pmf of N{i} is given by

distribution with shape parameter 1% and scale
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P(N{) =4} =P(N{{)=¢)—P(N{)=¢+1)
=P(5,=t)—P(S,, <t}
=G(togk)—GLali+1)k)

P(N(t)=0) =1—-G(£9,k).

The OC function is then given by

L(g) = Placcept Hilg)
=2:*=_LP(N(!;J =ilg)
=1-G{,0.k) +
SHG (y0,iR) — Gt 0,(iH1R)}

Values of #; and {, are determined to satisfy
L(1}=1—a and L(g,)=28. However, it may
not he possible to obtain a plan which satisfies
&« and £ risks exactly due to the discreteness
of 7, Therefore, the smallest 7, and the
cotresponding f, are determined such that L
(1)=1—a and L{fp,) < B. The procedures
for determining such 7, and §, for a hybrid
RASP are similar to those for determining 7;
and # for a failure-free petiod RASP, and
therefore, not repeated here,

Plans under hybrid life testing are presented
in Table 41 for the same combinations of
patameters as in (3.3). The case where a=
001, B=001, £=1/2, and =12 takes 37
se, on a 32-bit personal computer, which is
the maximum among all the cases considered,
From Table 4.1 we observe that as the
discrimination ratio decreases, 7, and §, also
decrease; as @ and B errors increase, 7, and
t, decrease with several exceptions for #,; and

as R increases, 7, decreases, but ¢, either

increases or decreases,

Related Performance Measures
The expected number of failures to reach a

decision is given by
E,(R) =2 4P(R=1)

where

P(R=1{)=P(N(t,) =1), i=0,1,+7,.

Since we were unable to find a closed form
expression for E (W) for a hybrid RASP, it
was estimated based on a simulation of 5000
trials for given @, B, &, and §,. Gamma random
deviates were generated using IMSL[10] sub-
routines DRNGAM, RNSET, and RNGET,

5. Comparisons of Failure-Free Period
and Hybrid RASPs

The two types of RASPs were first compared
in terms of the expected completion time for

the following combinations of parameter values,

(a,8)=(001, 0.01}, (0.01, 0.10),
(0.05, 0.05), (0.10, 0.01),

(0.10, 0.10) (5.1}
k=12, 2, 3, 5, 10
6=1/2, 1/5.

For each combination, the expecred comple-
tion time of the cortesponding failure-free
period RASP was calculated based upon Eq.
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Table 4.1. RASPs under hybrid life test.

« B 8 : 0.5 290 3.0 4.0 50 100
1
001 | 001 | 1/2 | 93® 32.000° | 24 33250 | 16 33.260 | 12 33.250 | 10 35000 | 5 35.000
13 | 38 10250 | 10 11.000 | 17 11750 5 11.000 4 1000 2 11.000
145 | 18 3.500 5 3500 3 3.500 3 5375 2 4126 1 1 4125
005 | /2 | 71 23000 | 18 23500 | 12 23.500 g 23.500 8 2750 | 4 26750
13 | 28 7.125 g8 8125 7.438 4 8125 3 7438 | 2 11.000
5 | 15 2504 3 2875 3 3500 2 2875 2 4125 | 1 4135
010 | /2 | 60 18825 | 15 18625 | 10 18625 | 8 20.250 6 18625 | 3 18825
173 | 26 6.750 7 6750 5 7438 4 B.125 3 7438 | 2 11.000
15 | 13 2031 4 1875 3 3.500 2 2875 2 4126 | 1 4125
005 | 0.0F | 1/2 | 65 23688 | 17 25000 ' 11 24125 | 9 26688 7 25844 | 4 30188
143 ) 26 7.688 8.453 5 9823 | 4 100N 3923 | 2 13250
175 | 13 2938 4 3969 3 4588 2 3989 2 5406 | 1 5406
005 | 1/2 | 47 161428 | 12 16,531 g 1653 6 16.531 5 17.375 | 3 21563
13 | 19 5047 5.406 4 6906 3 6906 2 5408 | 1 5406
145 | 10 1.969 3 2609 2 2609 2 3969 1 1969 [ 1 5408
010 | 1/2 | 38 32438 | 10 13.250 7 14.083 5 13250 | 4 13250 [ 2 13.250
13| 16 3969 3.969 3 5688 2 3569 2 5408 | 1 5406
115 8 1.358 2 1389 2 2809 1 1359 1 1969 ] 1 5408
010 | ©D1 | /2 | B2 19708 | 13 19.703 8 20578 T 21453 6 23219 | 3 23218
3 | 21 6609 6 7.828 4 7.828 3 7828 | 3 10297 | 2 14516
#5 | 10 2430 3 3148 2 348 2 4648 1 243§ 1 6219
005 | /2 | 36 12813 9 12813 6 12813 5 14516 | 4 14516 ; 2 14518
13 | 15 4.268 4 4848 3 5422 2 4648 2 6219 1 6218
1/5 7 1414 2 1742 2 3148 1 1742 1 2430 | 1 8219
010 | 12 | 29 9.875 § 11128 5 10.297 4 11125 3 10297 | 2 14516
13 | 12 3148 3 3148 2 3148 2 4648 2 6219 | 1 6219 °
1/5 6 1.102 2 1742 1 1102 1 1742 1 2430 | ¢ 6.2‘;?

K:shape parameter  a:number of failures{r,)

(3.5) for some sclected values of § over the
‘nterval [ g, 2]. For a hybrid RASP we
astimated the expected completion time based
apon 2 Monte Carlo simulation of 5000 trials.

Table 5.1 shows the approximate threshold

values § above which the failure-free period

b :censcring time(ty)

RASP has a shorter expected completion time
than the hybrid RASP, and vice versa (see also,
Figures 5.1 and 5.2 for typical cases).

For some combinations of parameter values,
the corresponding g lies outside the interval

[4, 2], and these cases are indicated in Table
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Table 5.1. Threshold Values 8* above which
failure-free period RASPs yield smaller
expected completion times,

a| B8] 8 |k=05] 2 | 3| 5 {10

C.01j0.01| /2 | 20 18| 15] 13| 11
115 1.3 08| 09| 09| -—-*

€.01]|0.10] 172 1.7 12| 11| 10,085
1/5 07 {{c2](02|(02| —

005|005 1/2 | »20 14 13§ 11| 08
1/5 08 [ (02[ {02 - -

0.10(001] 1/2 | 20 18| 161 13| 11
115 16 08| 03 - -

0.1090.107 172 18 12 12| 1.1 ({05
175 12 | (0.2 - - -

* denotes the cases where the two plans yield

identical E, {W)
E, W)
m

Figure 5.1 Expected completion time when
a=£=005 §=0.5, k=2

51 with appropriately directed inequalities.
Note that 9’ tends to decrease as £ increases
andfor 8 decreases, From these results, we may
conclude that the failure-free period RASP has
a shorter expected completion time than the
hybrid RASP when the true value of @ is
‘latge’, or equivalently, when the true mean

lifetime is large.

o0 02 w0 ; 20

]
() 08,)

Figure 5.2 Expected completion time when
a= =005 =02 k=2

The behavior of Ee(R) 15 similar to Eg( W),
That is, if true @ is larger than § in Table
5.1, EE(R) of the failure-free period RASP is
smaller than that of the corresponding hybrid
RASP, and wice versa.

As for the power, the failure-free period
RASP performs better than the corresponding
hybrid RASP if g is not close to @, and wice
versa (see Figures 5.3 and 54).

T - Power

10
os
- w-==eveeo Failure - Froe Period
Hybeid
o4
0z
a0
op a5 10 'y 2w 8

@) 8
Figure 5.3 Power curves when a=25=0.5,
§,=0.5, and k=2

6. Sensitivity Analysis

For both types of RASP, the shape param-
eter % is assumed to be known, To asssess the

sensitivities of @ and B errors with respect to
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Figure 5.4 Power curves when a=8=0.05,
#=0.5, and k=2

the uncertainties in &, we calculated actual
of « and B errors when (true
k)f(assumed &) = (1+49), 6=—03, —01,
0.1, 0.3. Then, the
parametets in (5.1) we calculated
Aa(AB)=actual a(f) erros when the true
value of & is (1+46) times the
—a(f)

when the true value of £ is equal

values

for combinations of

assumed value ertot
to the assumed wvalue.

Tables 6.1 and 6.2 respectively show Ae and

A values when a= 8~=(.05, These tables and

other computaional tesults indicate the follow-

ing.

1. For both RASPs, Ax < 0 and AS >
for ¢ > 0, and vice versa.

2. As g decreases, and B etrors become
less sensitive to the changes in £ for both
RASPs,

3. As for a errors, the failure-free period
RASP is less sensitive than the correspond-
ing hybrid RASP, As for B errors, the
above also holds except the cases where
g in Table 5.1 is close to g

Initem 1, ¢ > 0 (& { 0) means that the

true value of & 1s larger(sma]ler) than the
assumed value, or equivalently, that the true
reliability of the items is better{worse) than
the assumed. The findings in item 1 then imply
that the producer is protected more(less) and
the consumer is protected less {more) if the
better{worse) than the

true reliability s

assumed.
7. Conclusion

In this article, we developed hybrid and

failure-free period RASPs for testing the

Table 6.1. Az when «=0.05, £#=0.05

k 0.5 2 10
a, g
RASP 0.3 -0.1 0.1 0.3 03 | -01 01 03 03 041 0.1 0.3
1 F 0.141 | 0.032 | -0021 | -0.042 | 0.259 | 0.055 | -0.029 | -0.048 | 0.428 | 0.082 | -0.035 | -0.049
2 H 0.451 | 0.082 | -0.034 | -0.049 | 0,457 ] 0.083 | -0.034 | -0.049 | 6.528 | 0.095 | -0.036 | -0.049
1 F 0101 | 0.024 | -0.017 | -0.036 | 0.139 | 0.031 | -0.020 | -0.040 | 0.250 | 0.04% | -0.026 | -0.045
5 H 0.163 | 0.035 | -0.022 | -0.042 | 0.181 | 0,038 | -0.023 | -0.043 | 0.250 | 0.049 | -0.026 | -0.045
F: failurre-free period H : hybrid
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Table 6.2. A# when «=0.08, 5#=0.05

k 05 2 10
8, ¢
pas | 03 (01 [ 01 {03 |03 a1 |01 | 08| 03| 21|01 | 03
1| F [-0024|-0009] 0011 | 0.036 | 0.0% | -0.016 | 0.022 | 0.086 | 0.035 | -0.021 | 0.038 | 0.192
2[ W |-0045 | 0.030 | 0.063 | 0313 | 0.042 | 0.028 | 0.061 | 0.307 | 0.015 | 0.011 | 0.003 | 0.230
1| F|-0022|-0008] 0.009 | 0.030 [-0024 |-0010 | 0013 | 0047 | ~0 | =0 | =¢ | =0
5( H |-00%[-0012] 0017 | 0.071 | 0.009 | 0.005 | 0.008 | 0036 | =0 | =0 | =0 | <o

hypotheses on the scale parameter of a gamma
lifetime distribution with the shape parameter
assumed known,

Comparisons of the two types of plans
indicate among others that the failure-free
period RASP has a shotter expected completion
time than the corresponding hybrid RASP
when the true scale parameter is large(or
equivalently, when the true mean lifetime is
large). As pointed out by Angus ef al[1], a
great deal of effort is often expended in
practice, prior to taking an RASP, to obtain
assurance that the test will be passed, ie, to
assure that =g, Thus, in such cases the
failure-free period RASP compares favorably

Finally, for a given specific situation the
tzbles and figures provided in this article may
not be sufficient for selecting a plan andfor for
conducting a sensitivity analysis with respect to
the uncertaindes in k. In such a situation, we
recommend detailed analyses using 2 computer
program, which is available from the authors

upon request,
Appendix

Derivation of Eq.(3.4)
The truncated pdf of X is given by

Hxl X)) =g(ma ) PXC),

with the hybrid RASP. Otherwise, the failure- 0x (s,
free period RASP could require a substantially
longer tesing time than the hybrid RASP as Then,

shown in Figh1,

The uncertainties involved in the assumed
shape parameter result in different & and 8
errors from the specified values. However,
computational results show that these changes
are in favorable directions for the producer and

the consumer for both types of pians,

Fg =E9(X[X<tf)
= s Exf(x ]X(tf)dx

= ; fxg(x; gk )dfo(X(‘f)-

On the other hand,
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xg{x:08) = Fexpl —219) T ()6}

= kg2 exp( —2jg) TR+ 18]
=kpglx:6,2+1).

Therefore,

Hy = kEG (808 +1)(GL:0,).

Derivation of Eq.(3.8)

For a failure-free period RASP, the expected
numbet of failures until a decision is reached
is given by

E,(R) =3/ 4P(R=1)

=3/ 4P(R=i)+rP(R=1). (Al)
We first determine P(R=ff) as follows.

P(R=1,)=1—3,

=0

P(R=1)
52, ps(1—p,)
=32 g (1—p,) 7

= (1—p) =2y (1—ppY

=(1—3,)". (A.2)

Next, the first term in (A1) can be written

as

SLap (L=t =319,V =35,

Then

S—{1—p,)8

=f,€5

= (1=p)+ (1=py )4+ (1=p,)""
—(r=1D(1—p,)"

= (1=p)1— (1"
p— =1 (1—p,)". (A3)

Inserting (A.2) and (A3) into (A1), we
obtain {3.6).
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