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Economic Design of a Two-Sided Two-Stage
Screening Procedure with a Preseribed Outgoing
Quality

Hyuck Moo Kwon*, Do Sun Bai**

Ahstract

An economic two-stage screening procedure is presented when hoth lower and upper
specification limits are given on the performance variable, A screening variable which
is highly correlated with the performance variable is used first to decide whether an
item should be accepted, rejected, or undecided. The performance variable is then used
to cassify the undecided items. The two variables are assumed to be jointly normally
distributed. A cost model is constructed on the basis of six cost components; inspection
costs of screening and performance variables and costs caused by type | and type |l
misclassification errors related with lower and upper specification limits. Optimal cutoff
values on the screening variable are determined so that the average outgoing quality
exceeds o prespecified level. Solution metheds are provided for both known-parameter
and un-known-parameter cases. .

1. INTRODUCTION

Complete inspections are increasingly attractive in industries due to advances in
automatic inspection equipments. In a complete inspection, every item is subject to

acceptance inspection and any item failing to meet the predetermined specifications is

* Department of Industrial Engineeting, Pusan National University of Technology, Yongdang-dong San 100,
Pusan 608-739, Korez

** Department of Industrial Engincering, Korea Advanced Institute of Science and Technology, Gusung-doag
373-1, Yusung-gu, Dacjon 305-701, Korea



18 Hyuck Moo Kwon - Do Sun Bai

rejected. Often the major quality characteristic (performance variable) is difficult to
measure and a variable wﬁich is correlated with the performance variable (screening
variable) is used for screening. For example, when the "gain" of an amplifier in an
integrated circuit chip is the performance variable of interest, we may choose the "beta"
of its monitor transistor as a screening variable.

Most existing studies on the screening procedure can be classified into two groups; i)
one is focused on improving the outgoing quality to a prespecified level and ii) the other
is focused on reducing the expected cost. See Tang and Tang(1994) for detailed review.
In a screening procedure, two kinds of misclassification errors may occur; type I error of
rejecting a conforming item and type II error of accepting a nonconforming item. These
errors can be reduced by inspecting the performance variable for those items which are
difficult to classify correctly by the observed values of the screening variable. Based on
this idea, Tang(1988a) proposed an economic two-stage screening procedure using the
performance variable as well as the screening variable. Often, both outgoing quality and
cost are important. Bai and Kwon (1995) proposed an economic two-stage screening
procedure which guarantees a prescribed average outgoing quality (AQQ). The optimal
procedures were provided when a single specification limit is given on the performance
variable. For many products, however, both lower and upper specification limits are
given on the performance variable. Two-sided screening procedures based only on the
screening variables were studied by Li and Owen(1979), and Haas et al.(1985), and Tang
(1938b).

In this paper, we present an economic two-stage screening procedure with a

prescribed AQQ based on both screening and performance variables, extending the
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o
results of Bai and Kwon (1995) to the case where both lower and upper specification
limits are given on the performance variable. The screening and performance variables
are assumed to be jointly normally distributed. A simple cost model is constructed
involving six cost components; inspection costs of screening and performance variables
and costs caused by type I and type II misclassification errors related with lower and
upper specification limits. Optimal cutoff values on the screening variable minimizing the
expected cost are obtained subject to the constraint that the AQQ exceeds a prespecified
level. The model is described in Section 2 and solution methods for both known-
parameter and unknown-parameter cases are presented in Section 3. A numerical

example is given in Section 4.

2. THE MODEL
Notations

performance variable

screening variable
Mo means of Y and X
o, O, standard deviations of Y and X
o correlation coefficient of Y and X (0 << p<1)
. u lower and upper specification limits on 'Y

@, ©, O, 6, cutoffvaluesof X (o, <w, <o, <w,.)
¥ _ proportion of conforming items before screening

¢, C, unit costs of inspection with the performance and screening

variables
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CpC unit costs caused by the type [ misclassification errors in

A Y

relation to { and u

C.p C, unit costs caused by type Il misclassification errors in relation
to / and u

pa proportion of inspection with the performance variable

(), ¢() distribution function (df) and probability density function (pdf)

of standard normal distribution
G,() g0 df and pdf of central t distribution with # degrees of freedom

The Design Problem

Consider the situation where there are both lower and upper specification limits on the
performance variable Y; items with /<Y < are conforming and those with ¥ </ or

¥ >y are nonconforming. Assume that the screening variable X and Y have a bivariate

normal distribution with means i, and 7 standard deviations o, and ,, and positive
correlation coefficient ;. Then the two-stage screening procedure is :

First Stage : Take a measurement x of X for each incoming item. The item is

(@) rejected if x <o, OF x>w, B undecided if o, <x<w, oOr
0, <XS@,, and (c) accepted if @, <x < @,,-

Second Stage : Take a measurement y of Y for each undecided item in the
first stage. It is (a) rejected if y <1 or y>u, and (b) accepted if

Isysu

Here, o,, 0, @, and o, are the cutoff values to be determined. If X and Y are
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negatively correlated, the same procedure will be still valid by replacing X with .. x.
The average outgoing quality(AOQ) and the expected total cost (ETC) per item for

this procedure are obtained by
Y —&n 8y

AOQ = . , (D
Y —&n—&yTéptE,
ETC =€ 8y +C,6, +Cppy + €,y +C,T+C,s (2)

where  y=P(I<Y<u), g, =P(X<wo,,I<Y<u), ¢,=P(X>wn,isY<u),
&p=Plo, <X <w,,Y<), s,=Plw,<X<w,.Y>u), a=Plo,<X<w,)+
P(w,, <X <@,,) and the cost components are defined in the Notations.

The design problem is to find (@, @,, @, (o'ﬂ) which minimizes ETC subject to

A0Q > 6.
3. OPTIMAL SOLUTIONS

Case of Known Parameters

When all parameters are known, /. u, o, and @, i = 1,2 can be standardized as
t={-p o, T,=@-u)0,. k=@,-pn)yo, ad k =@,-p)o,..
respectively. ARer determining the optimal values k7 and &, the optimal cutoff values
can be obtained simply by o, = 4 +kjo, and @), =y +h o, i=12.

Note that, in a screening procedure with p reasonably close to 1, the probabilities
P(X>w,,Y<l)and P(X <w,,¥ >u) will be nearly zero or negligible and ¢, ,. &,
and g , can be aPPTOXimatéd by P(X <w,,Y 21), P(X >0, Y<un). P(X>0,Y<])

ad P(X <w,,,Y>u), respectively. These probabilities can be rewritten as functions
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o, by o, .0 B k) and B )of k., k., k, and k_, respectively. That is,

o, )= jf’,ﬁ{l— fb[ H)}tow« (3a)
o, k)= | ¢(%}wwz- (3b)
B ko=, [J_ ¢ )z, 39)
B. (k;.z) '[ {1 q{ﬁ]}@(‘-ﬂ" (3d)

Now, the design problem is to minimize
ETC = Cdar(kn ) +cmau (ku‘.’,) +caa‘ﬁ.|' (kfﬁ) +cauﬁw (kul ) +cv7rk + c.s (4)

subject to the constraints 40Q 24 and &, <k, <k <k, where

n =

= Q) - Ok T O, )-Dk,) (5)

This can be solved by a Lagrangean constrained minimization method. Since the

requirement 400 > & is equivalent to
0/6_117_&3 (kfl)"a‘u (kﬂ )]_BI a‘n )_Bu ﬂ‘m)z 0, (6)

we obtain the Lagrangean function as

L= ETC—?L,{(]/B—].IT —o, &y ), Ko )]_B.' i) B, &, )_312}

Ay by ey i)
_ls (kui '"kfz
Ay &y =y =55 ) ™

where ), and s, i =1,2,3,4, are Lagrange multipliers and slack variables, respectively.

Equating the first derivatives of L with respectto &, s, i =1,2,3,4, k, and £, ;

to zero, we obtain

- 0/8“117 o,y )-a, &, )]"'B: ;. )+B, &, )"’512 =0, (8a)
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-k 2 +kn ‘*'321 =0, (Sb)
k, k4P =0, 89)
"kuz +kn1 +5, T 0, (8d)
20,5, =0, 1=12,3.4, (8¢)
- S gluph -
[+ 4 (/8 ~ D)k, ){1 YT @[ ﬁ]}w o @9
G _alFo ok, ~ =0
(e +A)¢(ku){cd - @[ e )} 1 +4=0, (8)
(€., + APk, ){1 B 2 (I’[T" ok }}“ A+, =0, (8h)
wth |\ I-p?
¢ v L ok, _1 =0, :
[+ A1/ - ”]*"("*2’{0,, 5T q’[_ﬁﬁ ]} 2,=0 (8i)

Depending on the values of 57, j =2, 3,4, the solutions of these equations may yield one
of the following procedures; (i) a typical two-stage screening procedure with
k; < k;, <k <k, (i) a single-stage screening procedure based only on the screening
variable with & =k, <k, =k, (i) a two-stage screening procedure with
ki =k, <k, <k.,, where an item is rejected if x<w (=wp=w,) OF x>a,,
sccepted if @' <x<w),, and inspected with the performance variable if @} <x<w,,
(iv) a two-stage screening procedure with £ < k., <k = k_,, where an item is rejected
if x<w, OF x>, (= W, = @,,)s accepted if g, <x<w,, and inspected with the
performance variable if @, <x<w,. (v) a two-stage screening procedure with

o W L] Ll L] ¥ * L] . L3 L] L J - M
ky =ty =k, <k, kp<kp=k, =k, OF &y, <kp=k, <k, where every item which

ul
is not rejected in the first stage is inspected with the performance variable in the second

stage, and (vi) a trivial procedure with k, =k, = k;, = k,, where all items are rejected



24 Hyuck Moo Kwon - Do Sun Bai

without inspection.

When 5720, ;0 and s} =0, procedure (i) is optimal since ky <k <k <k,
from (8b), (8¢c) and (8d). By (8e), A,=A,=2Z,=0 and the optimal solutions are
obtained from (8f), (8g), (8h), and (8i) as

k==l + 0" (-—-"—)\/1-7] (%2)
Pl \C; A, (/8-1)

K =§ht,—®" 5 ]Jl-—p ] (9b)

K, = % B o :c:i X )ﬁ? ] 9¢)

S A e Iy } o

where 1 is determined so that (1/8 - )]y —a,(ky) - &, (k)] - B, (k) — Bu(ki) 2 0
and k, <k, <k <k . See the Appendix for a proof of the optimality. Note that, for
any given set of parameters and cost components, the value of A, can be determined
numerically by increasing 4 from zero until the requirements A0Q =& and
k, <k, <k, <k, are satisfied.

When 5] 20 and ) =5] =0, &, =k, and k" = k,, from (8b) and (8d), respectively,
and procedure (i) is optimal. In this case, ,1'2 0, 2,'3 =0, and 1, 0 and the optimal
solutions can be obtained by eliminating 7', in (8f) and (8g) and A, in (8h) and (8i) as

k]'.l = k;: = E|:'t, - @—{&M) fl— p2 ], (10a)

c e, +X, /8

. 1 c,, +A, 7

kK o=k,==|7, -0 —SaTh__1f_ 57| (10b)

“ [T" [cm+c(m+1,1/5} P ]

Procedure (jii) is optimal when ¢ =0, 5] # 0, and s, # 0, procedure (iv) is optimal

when 5 20, 5] 20, and 5, =0, and procedure (v) is optimal when s =] =0 and
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s; # 0, 0r 51 +0 and s‘ - 5; =0, or s; =0, s; =0, and 54 # 0. And the trivial procedure
(vi) is optimal when 4 = 5] = 5; = 0. Formulas (9a) through (9d) or (10a) and (10b) can

also be used in obtaining the optimal solutions for these procedures.
Case of Unknown Parameters

When all the parameters of the bivariate normal distribution are unknown, the usual

estimators X, ¥, Ser S, and  areused inplaceof y , 4, o, o, and p, respectively.
If a preliminary sample {(X,,¥), (X,,%), .--(X,,¥,) } from the unscreened popuiation

and vague prior informations on the unknown parameters are available, the predictive
distribution of T, = (X - X)/(S,) and T, = (¥-T)/(#S,) is bivariate t with joint

density function

1 12 =2rit +12
Ll — 1 1 172 2 s (]])
f 08 271‘\/1—1'2[ +(rr~2)(1ﬂr2)}

where 5p=[(n—1)(n+1)/n(n—2)]

Y2 Each marginal predictive distribution of T or 7, is

central t with -2 degrees of freedom. See Boys and Dunsmore(1986), and Kim and
Bai(1992).

Let rl'p = ({_y)/( US_\-) and rup = (“_jj)f(nsy)' Deﬁne Hf(tl) = P(Y; ?' Tfpl?-l' = fl)
ar"d Hu(!l) = P(?; =4 rupljl‘ = 'tl) Then H&'("l) is

1 .
H(t,)= ~2—,(,(,I)((n ~-1)/2,1/2), if f, <7, /r,
1 .
= 1—51‘,@((:1-1)/2,1/2), if 1, >z, /r, (12)

where a(fl)=(l—rz)(n—2+tf)/[(l—rz)(n—2+tf)+(qp—rtl)zl, Lx,y) =
[B(x, V)]"I_[:W"'I(I"W)Hdw, and B(x,v)=T(x)['(¥)/T(x+ v). See Bai and Kwon
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T —
(1995) for detailed derivations. # (4,) is given by (12) with Ty in place of Ty

Let & =(w, —X)/(7ns,) and &, =(aw,, - %)/(ns,). i =1,2. The probabilities , &, ),
o, k) B, &,) and B¢ ) are now replaced with the predictive probabilities

ay (&)= [ H (8)8,, (0)dr,» (132)
@, (£2)=1-G, (&)~ [ Hu(t)g, 2 (8)d (13b)
&) =1-Ga(&a)= [, Hi1)g, - (1), (13c)
Bol(E) = [ H, ()8, (1)t (13d)

respectively. Thus, the equation (4) and the inequality (6) become
ETC, = ¢, @, (En) + Cattp(E) +cuy(E) +euBp(En) +eym, v, (19)
(1/8-Dr, - @, (&) - @, (£)]-B, (&) - B, (£.) 20, (15)
respectively, where y =G, ,(-7,)+G, . (z,)-1 and 7z, =(}n_2(§n)v- G, .(&)
+G, ,(€,,)-G, ,(£,)- The design problem is now to minimize ETC, subject to the
constraints (15) and E s, <E SE,
By the Lagrangean constrained minimization method used in the case of known

parameters, the optimal solutions are obtained as

& =H' (cy Jles+A(/5- 1)]), (16a)
&, =H1-¢,/(c,+ 1)), (16b)
&= ;e (u + 4)) (160)
£, =H(1-c, /[e. + & y5-1)). (16d)

where 2 is determined by increasing 1, from zero until the constraints (15) and

£ <&, <&, <&, are satisfied. In particular, when =, <é =& the optimal

solutions are obtained by

g=& =H" (L’lla) (172)

e, + A4,/
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£= £, H;‘[c"‘ +4,(1/5- 1)). (18b)

c,+c, +A4[6

4. A Numerical Example

In this section, a numerical example which originally appeared in Li and Owen (1979)
is given to illustrate the proposed two-sided two-stage screening procedure. Based on
this example, some numerical studies are performed to compare the single- and two-
stage screening procedures. For unknown-parameter case, the effects of estimation
errors on the true ETC and AOQ are also investigated. IMSL (1987) subroutines are

used to evaluate statistical distribution functions and integrations.

An Example. Suppose that the voltage Y at an internal point of an electronic device is its
major quality characteristic (performance variable). Since this voltage is difficult to
measure directly, the voltage X at an external point (screening variable) is first measured
and then Y is measured for only those devices which are difficult to classify correctly by

the observed values of X. The lower and upper specification limits are /=12 volts and

u# =16 volts. The distribution parameters are g =10 volts, p,=138 volts, o,=2
volts, o, =2.13 volts and p=0.90 and the outgoing quality after screening is desired to

exceed §=0.95. Let the cost components be ¢, = $0.05, ¢, =$1.00, ¢, =c, =$2.00,

¢, =$3.00 and ¢ =$4.00.

Solution. The proportion of conforming items in the unscreened population is

y =080+085-1=065. Using formula (9a) through (9d), we obtain 1 =2.6031,
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e P
ky =-0.9779, k, = ~0.4928, k_, = 0.6486 and k" =1.1866. The optimal cutoff values
are thus @, =804, @, =901, w,, =1130, and @, =1237. The proportion z of direct
inspection with the performance variable is about 28.8% and the expected cost is
FTC =$05564. The optimal cutoff values of the single-stage procedure based only on
the screening variable, which can be obtained using formula (10a) and (10b), are
@, =943 and & =1097 and ETC = $03359. Compared to the single-stage procedure,
the cost reduction of the two-stage procedure is about 33 .4%.

If all the parameters are unknown, the optimal cutoff values are obtained using
formula (16a) through (16d). Suppose that the estimates for the unknown parameters are
¥=10 volts, y=138 volts, s, =2 volts, 5, =213 volts, and r=090 from a
preliminary sample of size 12. We then obtain X =4.1504, & =-0.9210,
&, =-0.3322, &, =04763, and £, =11133. The optimal cutoff values are thus
w;, =7.99. w;. =927, w, =11.04, and @, =12.43. The predictive proportion of

1

inspection with the performance variable is 7, =03595 and the predictive ETC is

ETC, =306264.

Comparison of Single- and Two-stage Procedures. In a two-stage screening

procedure, the proportion z will be largely affected by p and ¢, Figure 1 shows graphs
of 7T, VErsus ¢, for £=0.80(0.05)0.95. As expected, %, is small if p and c, are large.
When both lower and upper specification limits are given on the performance variable,
for some combinations of values of p, §, and y, the requirement 40(Q = § cannot be
achieved by any single-stage procedure based only on the screening variable. For
example, we find no procedures for (p,5,y,)=(0.80,0.95080) and
(p.8,7,)=(0.80,0.95,0.85) in the tables provided by Li and Owen (1979). In fact,
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AQOQ of any single-stage screening procedure cannot exceed

A0Q,e =20{(r, — 1) /241- p7)-1. (19)
See the Appendix for a proof In a two-stage screening procedure, however, the
rasclassification errors can be reduced to any desired level by increasing the proportion

of inspection with the performance variable and the prescribed AOQ can always be

attained.
W 20
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peos0 a0

64 -
I .85 30-
@k 20
050 L
16
. , ) . 0.95 [
B XY %3 TE 5

c, .
y
Figure 1, Graphs of &, for g = 0.80(0.05)0.95 Figure 2. Graphs of PCR for p=090 and 095

Let ETC, and ETC, be the expected costs per item of single-stage and two-stage

screening procedures, respectively. The percentage cost reduction (PCR) of the two-

stage procedure, compared with the single-stage procedure, is then
PCR=100x(ETC, - ETC))/ETC,. (20)
In Figure 2, graphs of PCR versus ¢_are depicted for p =0.90 and 0.95. (There are no

single-stage procedures achieving 40Q > 0.95 when p=0.80 or 0.85 in the example.) It

scems that a single-stage screening procedure is preferred when the correlation
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coefficient is close to 1 and the unit cost of inspection with the performance variable is
large. However, the percentage cost reduction is over 10% even when p=0.95 and

c, =$1.0 which is fairly large compared with the unit price of the item that will be
usually near ¢ L, =¢, =$2.0. The smaller the unit cost of inspection of the performance
variable is, the larger is the percentage cost reduction.

Effects of Estimation Errors. In the above example of unknown-parameter case, we
obtained the optimal two-stage screemng procedure with ETC, =$0.6264 and

A0Q, =0.95. However, ETC, and AOQ, are obtained based on the estimates of the

unknown parameters and may be different from the true ETC and AOQ. For example, in

the unlikely case where the unknown parameters are estimated without any errors, that

is, when #,=10, #,=138, 6, =2, 0,=2.13 and p=0.90, the two-stage procedure
with cutoff values @, = 7.99, w,, =9.27, w,, = 11.04, and @_, = 12.43 would yield true
proportion of inspection with the performance variable z=®((9.27-10) /2)
~®((7.99-10)/2) +®((12.43-10)/2) - ®((11.04-10)/2) = 0.3932 and the true
probabilities corresponding to misclassification errors ¢, ((7.99-10)/2) = 0.0285,
a,((12.43-10)/2) =0.0215, B,((9.27-10)/2)=0.0108, and B ((11.04-10)/2)
=0,0083, and thus ETC = 30.6088 < $06264 = ETC, and AOQ = 09691 >
(0:95= AOQ,. This implies that the prescribed AOQ is usually guaranteed at a cost lower

than ETC, if the estimation errors are small. When the estimation errors are large,

however, the prescribed AOQ may not be attained.
Since there must be sufficient information about p before X is selected as a screening
variable and 4 and g, can be estimated with sufficient accuracy without bearing

expensive cost, we assume that i , g and p are correctly estimated and study here only
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the effects of using incorrect estimates for 4 and o . We first find the optimal

procedures corresponding to various values of y and 5_and then calculate the true ETC

and AQQ for each procedure assuming that the true values of the unknown parameters
are given as in the example. In Figure 3, the true ETC and AOQ obtained by such

methods are graphically illustrated as functions of the standardized estimation error
e, = (y-13.8)/2.13 of H, for s, =152, 2.13, and 2.67. The values 1.52 and 2.67 are

selected to investigate the case where ¢, is badly underestimated or overestimated. ‘Note
that P(S, <152) or P(S, »2.67) is at most 0.1. Those graphs show that :
i) When o, is overestirﬁated with s, = 267, AOQ is higher than the prespecified
level & =095 but ETC is considerably larger than ETC with s, =213
ii) When o, is underestimated with 5, =152, the prescribed AOQ may not be
attained while ETC 1s close to ETC with s, =213.

iii) ETC is very sensitive to e, when o, is not overestimated.

o0 o0
3 =] i, = ;5;/"'——.—\
w5 |
o 213
ETC g A0Q 0
o
m -
o 152
[ 1 I 1 1 1 L ] 1 L
e T B g s Y/ R X S VX M (- 1 T 04 03 <02 =01 G0 G1 02 03 04 05
cy ¢’
() Graphs of ETC (b} Graphs of AOQ

Figure 3. Graphs of true E7C and AQQ for s =152, 2.13 and 2.67
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iv) AOQ seems to be less sensitive to ¢, and more affected by 5, And the

prescribed AOQ is usually guaranteed if o is not underestimated.

5. CONCLUDING REMARKS

We have presented an economic two-sided, two-stage screening procedure which
guarantees the AOQ to exceed a prespecified level. A simple cost model is assumned
involving costs of inspections and costs due to type I and type 11 misclassification errors.
Assuming bivariate normal probability structure for the two variables, solution
procedures are provided for both known-parameter and unknown-parameter cases.
When parameters are unknown, a preliminary sample is assumed to be available from the
unscreened population. No closed form solutions are obtainable but the optimal cutoff
values can be found by numerical search method. Existing softwares such as IMSL
(1987) subroutines can be used to obtain the optimal solutions.

The prescribed AOQ for the two-sided case may not be attained in the single-stage
screening procedure. In a two-stage screening procedure, however, the misclassification
errors can be reduced to any desired levels by increasing the proportion of inspection
with the performance variable and the prescribed AOQ can be always attained.

As special cases of the proposed model, optimal cutoff values of the single-stage
screening procedure based only on the screening variable and of the two-stage screening
procedure with no requirement on the oufgoing quality can be obtained. Numerical
studies show that the two-stage screening procedure guarantées the prescribed outgoing

quality at 2 considerably lower cost than the single-stage screening procedure even with

fairly large ¢, and p. When parameters are unknown, the prescribed outgoing quality is

usually guaranteed provided that o, 1s not severely underestimated.
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W
APPENDICES

L. Proof of Optimality of (9)

To see that the cutoff coefficients given by (9a) through (9d) are optimal, we obtain

the Hessian matrix evaluated at (/I'I,A',,I 2008, 85,5085 ko ke ko k) Let

4= )50k 1-0l(z, - pi) 17|

4, = §keol(r, - k) 1= 7).

4, = g 1= 0, - o)/ i)

A, = (Y-, )0{(z, - k) 1-7)
B, =[c, + 4,0/6-1) )k A(r - o) N1-7 ) of 1- 7
B, = (cy + Ak - ) NT-2 ) ol 1= 7 »

B, = (¢, + AN (r, - ok 1= 2 )l 1=

B, =[c.+ Z,(Y5- D]tk (5, - ok} NT-7) p/,/l_pz

Then the Hesstan matrix H is given by

[0 T A
H=[X A O}
A" O B
where i
0000 25, 0 0 0 A -4, A4 -4
: 1 -1 0 0
O: 0 0 0 0 ] = 0 23’ 0‘ 3A= +
0000 0 0 25 O 0o 1 -1 o
0 0 00 0 0 0 25 0o 0 1 -1
(24, 0 0 B, 0 0 0
A= 0 22’-2 0 ’Bﬁ 0 BZ 0 0 ]
0 24, 0 0 0 B 0
i 0 0 24 0 0 0 B
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(P R e S
Denote the j* principal minor determinant of H by det(#”). From the fact that 4, > o,
8 >0.and )} >0,i=12,3,4,

det(H)=0for j=12,..7,
det(H") = 256] .5 20,
r #2 =2, #2 2

det(H®) = 128(2B;s, s;" + APNs;” + Aos; )sy s, 20,
det(H") = 256B,B, [ | 5" +128BAss s;’s, +128(B, + B)As; 8. s,

+128(AZB, + A2 B)AS)s) sy + 64405, s,
AR+ 64(A ~ AV LSS,

20,
« a2 &2 + &2 «2 7

det(H")=256B,B,B, [[,.,5 +128B,B,M,5;s)’s, +128B(B, + B3, 5, 5,

FI28(B, + BB XS s s +108(A7 B, B, + AZBB, + ABBKs;'s)'s),
SABAN,S S + 64(B, + BN NS S] + 64(AB, + AZBIN XSy sy
+64(B, + B, + BYA, Ny, s, + 64 A7 (B, + B) + (4~ 4, BN Xs;'s)
+64[(A4, — 4,) B, + AZ(B, + B)AA,s S #3200 X s,
SIRATNAN S +32(4, - A PNNNS +32(4, = A, + A RANSS,
20,

det(H') =256 ]],.,( B,.s,.'i) +128B,B,(B, + B)X,s, 5.5,
+128B,B,(B, + B)N,s. s)7s.} +128B,B,(B, + B,)N,s, s, 5,
+128(A2B,B,B, + A2B,B,B, + A2B,B,B, + A1B,B,B)X;s} 5, 5}
+64B,(B, + B, + B)N,Xs, s} +64(B, + B)(B, + BOM,X,s, s,

«2 «2

+64[(A?B, + AJB,)(B, + B)+ BB,(4, - A,V \\N.s) s,
+64B,(B + B, + Bs)l;}\.;s;zsf
+64[(AZB, + AZB)(B, + B+ (A, - A BB N NS

+64[(AZB, + ABX(B, + B,) + (4, - 4,) BB\ A,s)"s)
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+ a2

+32(B + B, + B, + B)A,AA.s,
+3AX(B, + B, + B,)+ (4, - A, ~ AV BN AN,
+32{(A, = A) (B, + B,) + (A, - 4,) (B, + B, )]1‘,1‘21'4.:;’
+32{ AZ(B, + B, + B)+ (A, — A, + A BN KNs)
+16(A, - A, + A, ~ AP A NN,

>0,

and H is positive semidefinite.

TI. Proof of formula (19)

Let @, and @, be any two cutoff values of a single-stage screening procedure. Then

AOQ =PI <Y <ulw, £ X fw,)
< max P/ <Y <u|x)

X Ly |
< max }P(Ig Y <u|x)
Since Y|x is normally distributed with mean U+ plo, /o’x)(x— u.) and variance

¢2(1- p*), P(I <Y <u|x) canbe rewritten as

P(ig}’Sulx)z(D[ T"_pz]—tb[ ’*"0’}

(1-',02 ’l—pz

where 7= (x- u)/o, . By differentiating this equation with respect to z, we obtain

2" =(r,+1,)/(2p) and
max P(I<Y suxy=20{(z,—1,)/2y1- p7)-1

NE(—o0,u)
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