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A heuristic algorithm for forming machine cells
and part families in group technology
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Abstraet

A similarity coefficient based algorithm is proposed fo solve the machine
cells and part families formation problem in group technology. Similarity
coefficients are newly designed from the machine-part incidence matrix.
Machine cells are formed using o recurrent neural network in which the
similarity coefficients are used as connection weights between processing units.
Then paris are assigned to complete the cell composition. The propesed
algerithm is applied to 30 different kinds of problems appeared in the
literature. The results are compared to those by the GRAFICS algorithm in
terms of the grouping efficiency and efficacy.

1. Introduction

Group technology(GT) is a philosophical
concept which takes full advantages of similar-
ity of items which are to be classified and
processed. When GT is applied in the area of
manufacturing, it takes the form of cellular
manufacturing{CM) i which machines, tools

and parts to be processed are grouped into cells

- Ao 293D

according to the similarities of design features
or production processes. Among various bene-
fits from CM, reduced number of set-ups,
reduced work-in-process inventories and re-
duced material handling cost are critical ones.
For the successful implementation of CM,
identification of relatively independent manufac-
turing cells is necessary in the design phase of
CM systemn. Since Burbidge’s[1] pioneering
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work on the production flow analysis, num-
erous metheds for the machine cells and part
families formation have been developed. Exten-
sive survey and classification of grouping
methods can be found in Chu{2], Cheng[3] and
Offodile er al[4]. One of the categories of
classification is the similarity coefficient based
method in which grouping procedure starts with
the derivation of similarity coefficients from
the machine-part incidence matrix., Based on
the similarity coefficients, either an analytical
method or a heuristic method for grouping is
presented. McAuley[5], Carrie[6], Seifoddini
and Wolfe[7] and Seifoddiri[8] used linkage
clustering, where the strength of linkage
between machines or machine cells are calcu-
lated and then machines or machine cells are
put together to form a larger machine cell.
Rajagopalan and Batra[9] applied graph parti-
tioning approach where the resulting subgraphs
are taken as machine cells, Kusiak[10] formu-
lated an integer programming model in which
the objective is to maximize the sum of
similarity coefficients of part pairs in same
families. Srinivasan et alf[ll] sclved the
assignment problem using the similarity coeffi-
cients matrix as the cost matrix to obtain
machine cells and part families. Srinivasan and
Narendran{12] modified the previous one by
including repetitive column and row clustering
procedure in the algorithm which they named
GRAFICS-grouping using assignment method
for mitial cluster seeds. Srinivasan[13] used the

winimum spanning tree to obtain clustering

seeds from which part clustering and machine
clustering followed.

In the other part of the world, many neural
network models have been proposed to solve
optimization problems and engineering prob-
lems[14], Hopfield[15] suggested a neural
network based approach for solving optimiza-
tion problems using a fully connected recurrent
network of processing units i.e., neurons. The
objective function and constraints of the
optimization problem are mapped into a
guadratic energy function of the network which
is to be minimized through the evolution of
the network, With respect to machine cells and
part families formation problems, Moon[16, 17]
suggested a grouping method based on interac-
tive activation and competition network which
consists of three pools of processing units, one
each for parts, machines and part instances.
Moeon and Chi[l8] extended the grouping
method so that the sequence of part processing,
preduction lot sizes of parts and multiple
processing routes can be included for considera-
tion, Kao and Moon[19] used a three layered
feedforward neural network to form part
families from a part pool where each part is
tagged with binary and chain type classification
code. Kaparthi and Suresh[20] used adaptive
resonance theory 1{ART1) neural network[21,
22] in which clusters are found in an
unsupervised mode. Later, Kaparthi, Suresh and
Cerveny{23] improved the previous method by
reducing loss of information during the execu-

tion of clustering algorithm. Suresh and Kapar-



thi{24] presented a cell formation method using
fuzzy ART neural model[25]} whose perfor-
mange was compared to some existing methods
including previous ART1 based method. Chu
[26] used competitive learning algorithm to
form the machine cells and part families where
the oumber of cells to be formed was
predetermined. Machine cells and part families
were formed in separate networks and com-
bined mto a grouping solution. Chakraborty and
Roy[27] reported a part-family classification
method utilizing two different neural networks,
self organizing feature map and backpropaga-
tion network. Venugopal and Narendran[28]
compared neural network based cellformation
methods including competitive learning model,
ART model and self organizing feature map
model.

In this paper, we propose another way of
extracting similarity coefficient between ma-
chines from the machine-part incidence matrix.
And then based on the recurrent neural network
model[15] whose energy function is built upon
the proposed similarity coefficients an algo-
rithm for machine cell formation problem is
presented. Parts are assigned to the cells to
complete the cell composition. Grouping effec-
tiveness of the proposed algorithm is compared
10 GRAFICS in terms of the grouping efficien-
cy[29] and grouping efficacy[30]. The comparis-
on is made via 30 different kinds of problems

which appeared in the literature.
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2. Similarity coefficients for machine
cell formation

Let M be the number of machines 1o be
grouped, N the number of parts to be processed
on these machines and 4 = {a,,}(i= 1,2, - M,
p=1,2,--- N) be the machine-part incidence
matrix where a;,= 1 if part p is processed on
machine i, otherwise it is 0. Also let s, be the
similarity coefficient between machine  and ;.

Utilizing the similarity coefficients between
machines, the machine cell formation problem

can be formulated as follows

MMM

Maximize ¥ T ¥ sX;X; (n
k=li=1j=t
M
subjects to YX,=1 for i=1,2,. M (2)
k=1

X, €40,1} for i and k= 1,2, ..M (3)

where X, =1 if machine i/ belongs to the
machine cell k, otherwise X, = 0.

By maximizing the sum of similarity coeffi-
cients of all machine pairs in the same cells,
machine pairs with large positive value of s;
will be put into the same cell. Compared to
the objective function in the p-median model
[9], the objective function (1) seems more
reasonable because every machine pair in the
same cell contributes to the objective function,
Constraints (2) in the above model ensure that
every machine will find its cell to be in.
Instead of prescribing the number of machine

cells to be formed, we let the grouping
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algorithm determine it naturally.
Anderberg(31] listed various similarity meas-
ures for clustering binary data of the incidence
matrix, yet the list is not final. From the
incidence matrix A, let c; be the number of
parts processed by both machine / and machine
/ and d;; the number of parts processed by

either machine  or j, not both. Using c; and

dy various similarity coefficients have been
suggested(2, 4]. The well-known Jaccard’s
measure[5, 6] and Hamming’s distance[10] are
examples. Recognizing some drawbacks of
these similarity coefficients, Seifoddini and Hsu
[32] suggested a weighted similarity coefficient
to overcome improper machine assignment. In

the weighted similarity coefficients, ¢, and d;

.
are weighted part by part.

Observing the objective function (1}, the
s:milarity coefficients should not be either all
positive or all negative. Both cases will lead
to extreme grouping solutions such as a
solution of M singleton machine cells or a
sofution of single machine cell with M
machines in it, In this regard, we propose the
following similarity coefficients to be used in

cell formation where « is a weighting factor.
55 = (c;j- -ady) ’Z—‘fj‘!clj- ad,|
for ,j=1,2,..M and { = j,
5;=0 for i,j=1,2,.., M and i=j. (4)

These similarity coefficients will lie in {-1I,

1] due to the common denominator scale factor,

T e;-ady|. If the similarity coefficient of a
pair of machines is positive, the pair is
encouraged to be in the same cell. Otherwise,
it is better not to be in the same cell. The
value of the weighting factor can be selected
through some preliminary experiments. As a

starting point, we suggest to use o= R where

MM MM .
R=CD, C=53 Zc;and D=33 3 d; With
M M il j=1 =1 =1
a=R, ¥ ¥5;=0 and similarity coefficients
=t =i

disiribute around zero. As ¢ grows bigger, the
value of similarity coefficient decreases to -1
and the number of machine cells formed tends
to increase. By sefting @ to be some multiple
of R, the effect of @ on grouping solutions
will be examined later through numerical

experiments.

3. Cell formation algorithm based on a
recurrent neural network

Hopfield[ 15] used a fully connected recurrent
network of processing units to solve optimiza-
tion problems. In discrete version of his model,
each processing unit receives inputs from other
processing units and an external source, which
are weighted using connection weights between
processing units and summed up te be
compared {0 a threshold value. If the weighted
sum of inputs exceeds the threshold, the
processing unit will be firing i.e. the output of
the processing unit hecomes E. Otherwise, the
processing unit will not be firing and its output
becomes 0. These binary output values of
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processing units tell us the current state of
network and they are put back into all
processing umiis to be used as inputs in the
following step, so the network is recurrent.
This process repeats until the state of network
is stabilized. A recurrent neural network can
be designed and used to solve an optimization
problem. The decision variables in the optimi-
zation problem are mapped into the output
variables of the processing units. The objective
function and constraints are put together into
a quadratic energy function, E, representing the
energy level of the network, From FE, the
connection weights for all pairs of processing
units  will be derived. If the matrix of
connection weights is symmetric with zero
diagonal elements, it has been shown that the
network always converge to a stable state
which corresponds to a local minimum point
of E by Cohen and Grossberg[33]. The solution
of the optimization problem can be retrieved
from the output variables of processing units
at any points of time during the network
evolution,

The machine grouping problem in the
previous section can be modeled as a recurrent
neural network with M* processing units. Each
decision variable X, is mapped onto the output
variable V; of processing wnit (i, k) where i
and k= 1,2, ..., M. V, = 1 if machine i belongs
to cell k&, otherwise V,=0. The objective
function and constraints are converted into the

following energy function, £

B M M CM M .
E = EE EIV&“ “Vi) + 55 EEV&.I }
DM MM
- 525V, (5)
2k=1r'=|j=l 4 s

where B, C, and D are weighting factors.
The first two terms are for the constraints (2)
and (3) in the optimization problem. These
terms will vanish to zeros if the Iocal point of
E corresponds to a feasible solution of the
optimjzation problem. The objective function,
(1), appears in the third term of equation (5).
The network will evolve from its initial state
toward an equilibrium state which corresponds
to a local minimum of the energy function E.
Quite

often, local points are invalid solutions to
the original optimization problem violating the
restriction that each machine must belong to
one and only one machine celt, To avoid this
difficulty, we use the maximum neural network
[34]. A cluster of M® processing units can be
divided into M clusters of M processing units
where each cluster is a potential machine cell
and ¢ th processing unit in each cluster
indicates which cell machine { will belong to.
Among M processing units for machine J, one
and only one processing unit will be firing as

follows

VHL = 1 i.f U!k= maXImlII'ﬂ {Uﬂ, Uﬂ, R Ur’rf}'
Vy=0 otherwise. (6)
where U, denotes the sum of weighted

inputs to the 7 th processing unit in % th cluster.
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In this way, every machine will find its one
and only one cluster to be in. Coupled with
the fact that V;'s are binary variables, equation
(6) allows the energy function E to change into

the following

MM
EZSU :k jk (7}

A
2 =1j=1

’IFM&

The input to the processing uni {i, &) is
updated by the following equation

M
J=1

where ¢ is a noise termn hopefully prevent-
ing the network from settling down to a bad
Iocal minimumn abruptly. From equation (8), we
know that processing units receive excitatory
or inhibitory signals from other processing units
in the same cluster. If the connection weight
i.e. similarity coefficient is positive, the signal
it will be
inhibitory. A machine pair with large positive

will be excitatory. Otherwise,

similarity coefficient is likely to have their
processing units fire simultanecusly in one
custer and be silent in all other clusters. A
machine pair with large negative similarity
coefficient is likely to have their processing
units fire in two different clusters.

Once machine cells are formed, parts are
assigned to the cells so that the number of
exceptional elements that will appear in group-
ing solution to be minimized. If there are ties,
part will be assigned to a cell with the least
number of in-cell blanks. The proposed algo-

rithm for forming machine cells and part
families are described stepwise in the follow-

ing.

1. Set ¢t = 0.

2. Random numbers from the wmiform
distribution U(-0.5, 0.5) are assigned to the
initial values of Uy(s) for all i and &

3. Evaluate V() using equation (6). If the
network is at an equilibrium state, go to step
6. Otherwise, proceed to the next step.

4, Calculate the incremental change of the
input, AUy for ali i and &k where

M
AU0= T5 V() + €@, (9)
=1

e is assumed to follow nomal distribution
N l 0 fog@ D log(2+r)
ture parameter.

5. Calculate U,(++1) for all i and % as
follows

Ul Y= Uy + AU 0 (10)

Return to step 3.

. where 7 is called the tempera-

6. (Assignment of parts) Given the machine
cells C, C, -+,

machine cells, the remaining problem is to find

C, where K is the number of

the corresponding part families F, F, -, Fp.
For part p(p= 1,2, «-, N), compute the follow-
mgs;

EX,{p); the number of exceptional elements
when processing of part p is confined to
machine cell &.

BN/(p); the number of in-cell blanks when

processing of part p is confined to machine
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cell & ) Toble 1. Incidence matrix, ¢(d;] values and

Assign part p to the family k with the simlarety coefficient matrix.

minimum EX-value. If two or more EX/{p) are
Parts

1 2 3 4 5 ]

tied for the minimum, choose the family with

the minimum BN-value among them. In the

case of tie in BN-values, choose a family

—
o
—y
L=
—
N AR _‘
—_

O L) =~J

arbitrarily. 2 |1 |0 | 1000
3 1 0 1 0 0 1 1
4. Numerical example 4 0|t o0t 0|10
5 1 ] ] 0 1 ] 1

To illustrate the proposed algorithm, an Table 1a. Incidence matrix

example problem with five machines and seven

parts in King and Nakomchai[35] is solved.

_ Machines
The machine-part incidence matrix of the
1 2 3 4 5
problem is shown in Table 1a.

By definition, c;/s(d,’s) and similarity coef- L I IO B ST )
ficients are obtained and listed in Table 1b and 2 D R B L
lc. For example, we calculate 5; as follows; 3 1(5) 23)

From Figure 2b, we have ¢;=0, di;=6, 4 0(6)
C=11,D=42 and R=0.2619. By setting &= 5
| mukiple of R=02619, we have %7 |c; - ady| = C-11. D-42 and R-02619

0-(0.2619X6) ‘sl
2.739. 8o, s.= 2739 - -0.574. Table 1b. CES(d,;S)-

To see the iterative improvement of machine
cell composition along with evolution of the Machines
network, computational results in each iteration 1 2 3 a 5
are shown in Table 2. Also included in the 1 0.0 0574 -0.209 1.000| -0.113
table are the output variables, V,'s, intermedi- > | -0574] 00 0539 -0478| 0078
ate machine cell composition retrieved from 3 0209 0539 00 0113|0443
Vi's and the values of energy function, E.

4 1.000| -0.478| -0.113; 0.0 -0.574
Value of E decreases until a stable point is
5 -0.113| 0078 0.443| -0574| 00

reached. The machine cell forming procedure

. . ) average=0.000 and variance=0.245
stops at the 4th iteration at which we have an
. . . . . Table 1c. Similarity cosfficient matrix.
identical result as in the 3rd iteration. At step

6, parts arc assigned to machine cells. Table
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Table 2. Machine cell formation

No. of Iteration| V, values [Machine cells|E value

1 00100 {1} 0.035
00001 {24
00010] {35}

00001
00010

2 D01T00| {14 -1.078 |
00010]| {25
00001 {3}
001070
00010!

3 00100 {14 -2.060
00010 {235
00010
00100
00010

4 00100 {14 -2.060
00010 {235 :
gog10
00100
‘00010

Table 3. Grouping solution ond its
block-diagonel form,

K | Machines | Parts 2|4|5]6,118]7

’ 101[1]1]1]{oj0]0

1 (1.4 {2,4,5,6} T ToTioloTa

2lolgio’of1[1]0!

" alofofoft 111

2| {235 i{1’3’7} slelof1]o[T o]
Table 3a. Table 3b.

3 shows the grouping solution in table form
3a and block-diagonal form 3b. We note that
the solution has two machine cells, i.e. C, = {I,
4}, ¢;=12,3,5} and contains 2 exceptional
elements.

5. Computational experience

The performance of the proposed is exam-
ined by solving 30 different problems from
various literature. To use the proposed algo-
rithm, values of two parameters, the weighting
factor and the temperature parameter, should
be determined. The weighting factor o, in the
equation (6) for similarity coefficient is et its

M
value at @ multiple of R which is E eyt

E Edu To see the effect of ¢ on ngo]urplmg
solunons we tested o values such as 1R, 2R,
3R and 6R. The temperature parameter T, in
equation (9} for updating input to the process-
ing units, is set 0.02 based on pretest of several
problems,

Srinivasan and Narendran[12] did a compara-
tive study of the GRAFICS and ZODIAC[36]
algorithms on a set of problems and reported
that GRAFICS performs better based on
grouping efficiency(CI) and grouping efficacy
(CA). The grouping -efficiency(CI) is the
weighted average of the portion of ‘1’s in
diagonal blocks and the portion of balnks in
off-diagonal blocks while the grouping efficacy
(CA) is the portion of ‘I's in diagonal blocks
with respect to the elements in the operational

s ) [
. e-EX MN -{e-EX+IB)-EX
= " e BB
W= r~<1 (in
ca- - EX (12)

e+ B
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Table 4. Comparison of the proposed algorithm with the GRAFICS algorithm

713

| Proposed algorithm !
GRAFICS
a=R a-2f a=38 |  «-6R
No. Source size | e| Ol [CcA| C |calk|ci[calk|ciicalk e |calk
1. King and Nakornchai[35] 5x7| 16| 856] 73.7| 856] 73.7| 2| 856! 73.7| 2 88.0| 625| 4| B5.0| 647 3
2. Waghodekar and Sahu[37] x71 20| 745! 809] 77.1| 88.0| 21 74.5| 60.9| 3| 80.0| 500 80.0| 500 4
3. Pannarselvam and ; !
Balasubramanian|36) 10x5| 18] 88.0| 76.0| 89.1| 78.3| 3| 89.1| 783! 3 89.1_ 783 3 94,3: 78.0] 5
4. Seiffodini and Walfe[7] 8x12| 35| 87.1| 68.3| 79.7! 620 3| 90.9| 694 4| 90.9| 69.4| 4! 831| 514 5
5. Chandrasekharan and
*"" Rajagopalan[29] 8x20! 61| 95.8| 85.2! 95.8 853| 3| 938! 77.1| 4] 938| 77.1| 4| 938 771! 4
i 6. Chandrasedharan and :
Rajagopa!an[sg] 8x20] 91; 76.3| 5B.1| 73.1| 56.3| 3| 78.3| 41.8| 6| 76.7| 341 7 77,6: 385 8
7. Srinivasan et af[{1] 10x20| 49|100.0{100.0(100. 1100, : 4[100. 100, [ 4/100. 100 | 4:100. |100. | 4
8. Dewitte[40] 122181 75| 744 52‘8. 76.9i 55.2| 4| 83.8' 56.0| 6| 83.8| 56.0| 6| 88.6| 40.0/10;
© 9. Seiffodini[g] P11x22° 78| 87.8° 731 87.8| 73| 3! 883 722 4 883l 722| 4| 03] 557] 8
10. Askin and Suhramanian[dT] 14x23: 5Bj 825, 64.4| B37| 667 4| B3.7| 66.7| 4| B3.7| 667 4 84.1| 729 6
11. Stanfel[42] 14x24| 61| 83.9| 656| 84.4| 67.1| 5| 84.4| 67.1] 5| 839| 67.1] 4 89.01 89.4, 6
12. MeCormick et al[43) 24x16| 85| 73.4| 45.5| 745’ 469. 6| 83.9| 50.0{10| 89.7; 40.4|12, 91.0] 46.0/15
13. Carrie[6] 24x18" 88| 756! 489! 72.7| 441| 5 761 4B.9| 7| 79.8| 50.4| 9| 88.9| 50.0014
14. Srinivasan et al[t1] - 16x30: 116! 86.41 67.8; 81.4| 605| 4; B87.4| 68.4| 5 87.4| 68.4| 5 90.0| 55.7.10
15. King[44] 16x43|126| 79.4| 54.4| 79.8| 54.5| 6| 70.9| 545! 6| B3.0| 554/ 8 90.6 51112
15 Carrie[6) 20x35|136| 87.8| 75.1! 881" 75,7;' 4| 88.1| 75.7| 4| 88.1. 75.7| 4. 88| 760 6:
17. McCormick ef al[43] ! 27x271219| 714 47,4i 73.1 49.9: 51 747 48.2| 9! 84.4| 38.0(13| 871 259 184
18. Chandrasekharan and i ! '
Rajagopalan|45] 24x40{131,100.0{100.0|100. |100. | 7|100. |100. | 7|100. |100. 7.100, 100 . 7
19. Chandrasekharan and ' : i _
Rajagopalan(45] .24x40 130| 952| 85.1| 94.5: 79.4| 8| 95.21 851 7| 952| 85.1| 7. 95.2| 851 7
20. Chandrasekharan and : . ) ;
Rajagopalan{45] 24x40;131° M.2] 73.5: 91.2| 735| 7] 91.2| 735| 7! 91.7| 723 gl 928| 72210
21. Chandrasekharan and
Rajagopalan}4s| 24x40|130| 78.9| 43.3 73.2. 457° 7| 83.8| 528, 9 87.4_ 5.7 13, 833 474 16!
:22. Chandrasekharan and
Rajagopalan[45) : 24x40.131 791 44,5. 67.7| 344| 7' 879 48.9(12| 89.3| 47.2(13| 952| 455117
23. Chandrasekharan and i ; !
Rajagopalan{45) 24x40(131] 79.1| 41.7| 68.1| 351| 5| 84.9| 44.7|12| B5.2| 24.3/11 i 925 41.0_3.
24. Kumar and Vanelli{46] 30x41|127| 823| 554| 761! 50.4; 8| 78.4| 53.9/10| 78.4] 53.9 10, B4.3| 58.3|14.
25. Carrie[6) 28x46|211| 65.3| 329| 71.3| 404| 9| 77.9; 44.9[12| 84.2| 455[16| 025 30.523
26. Stanfel[42]  30x50i154] 85.2| 56.3] 72.0| 435| 5 73.6| 45.9| 6] 77.3| 50.0| 9| 854| 575/12
27. Stanfel[42] 30x50|167| 85.6| 48.0| 77.7| 44.1| 8| 80.1| 46.9| 9| 85.1| 50.0{11| 91.8 48.0/18
28. McCarmick ef ai[43] 37x53|977| 76.1| 522| 74.1| 59.9| 8| 76.6| 53.6[11| 77.5} 46.3|15[ 78.5| 40.1]22.
29. King and Nakornchai[35] 36x90|303| 72.9| 37.0| 65.4| 30.8|14| 68.9] 355(16| 76.2| 42.6(19| 86.4| 46.0(27
30. Chandrasekharan and ) ;
Rajagopalan4s] 40x100;420 ?1,9| 35.6[ 90.3| 76.2| 91 95.1| B4.0|10} 95.1| 84.0{10| 95.1 84,0i10
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where e =the number of ‘1’s in the inci-

dence marrix,
EX = the number of exceptional ele-
ments,
IB=the number of blanks in the
diagonal blocks and
7 =05

We compare the solutions by the proposed
algorithm to those by GRAFICS and the results
are in Table 4. Included in the table are the
source from which it was found(source), the
size of the incidence matrix(size), the number
of ‘I’s in the matrix (¢) and the CI and CA
values of solutions by the GRAFICS algorithin.
Also, shown are CI and CA values of solutions
by the proposed algorithm along with the
number K of cells in the solutions.

In almost all the cases, the number of celis
in the solution by the proposed algorithm
increases as ¢ increases. Problems with
especially  well-structured  incidence matrix,
such as problem 7 and 18, are not affected by
a. In many problems, CI valoe seem to be
better at higher @ wvalues. As the size of
problems become bigger, there is a tendency
ttat the highest scores in Cl and CA are
obtained at higher o values. With o fixed,
CI and CA values of the proposed zlgorithm
look competitive with those of GRAFICS. For
all problems except problem 6, the proposed
algorithm shows at least one solution with CI
and CA values bigger than those of GRAFICS.
It is possible to use the proposed algorithm to

generate a set of different solution for a
problem by varying the value of , then a
solution is chosen that fits best in terms of the
specific measures of goodness of grouping
solution to be wsed or some managerial
preferences.

6. Conclusions

This paper proposes a recurrent neural
network based algorithm for the machine cells
and part families formation problem. Newly
designed similarity coefficients of machine
pairs are used as connection weights between
processing umits in the neural network for
forming machine cells.

The performance of the algorithm is com-
pared on a set of problems with that of
GRAFICS. The test results indicates that the
propesed algorithm generates better solution in
many cases. We may conclude that the
algorithm could be regarded as a competitive
one with the existing algorithms in generating

effective solutions.
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