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An 'Anderson-jDarling Goodness-of-Fit Test for the Gamma
Distribution
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Dept. of Industrial Engineering, Hansung University

Abstract

This paper provides a test of the composite hypothesis that a random sample is
(two parameter) gamma distributed when both the scale and shape parameters are
estimated from the data. The test statistic is a variant of the usual Anderson-
Darling statistic, the primary difference being that the statistic is based on the
maximum likelihood estimator of the shape parameter of the assumed gamma
distribution. The .percentage points are developed via simulation and are presented
graphically. Examples are provided.

1. Introduction

The gamma family of distributions is widely used in life and reliability - studies,
in large measure because of its . distinctive failure rate function. It is therefore of
some interest that a test be available to determine Whether in the course of
modeling of or analysis of lifetime data the assumption of a gamma distribution is
warranted. We are primarily concerned with the two—parameter gamma dlstnbutlon
although _our results can be extended to several more comphcated settings
mvolvmg the gamma d1str1but10n the three parameter gamma for example Our
results cover only the case in which both scale and shape parameters are
unknown and must be estimated from the data; other cases in which combinations
of parameters are known must be handled separately. We believe, however, that
the case we consider is the most useful in a life testing and reliability context.
The goodness of fit problem in which the parameters are unknown and must be
estimated from the data is most easily approached by one of the variants of the
chi-squared procedure (Moore arid Stubblebine, 1981).
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However, the chi-squared approach is likely not to be as powerful as procedures
based on empirical distribution functions, Anderson-Darling procedures for
example. Relevant work for testing for the gamma distribution has been done hy
Lillifors (1969), bv Durbin (1975), and especially Woodruff, Viviano, Moore, and
Dunne (1984).

This paper presents in a graphical format percentage points of modified Andersor~
Darling statistic /1% for a test of the two-parameter gamma distribution when
both parameters are estimated from the data for sample size n = 10, 15, 20, 24, 20,
40, 50, 60, 120, for shape parameter less than 20, and for size of test 0.10, 0.Co.
0.025, and 0.01.

2. Problem Statement

Notation
n random sample size
Al Anderson-Darling statistic
ﬁf, Anderson-Darling type statistic with maximum likelihood estimates
a shape parameter of gamma distribution
yel scale parameter of gamma distribution
a maximum likelihood estimate of «
ﬁ maximum likelihood estimate of A

f(x: a, ) gamma density with shape parameter @, scale parameter £
g(x: a, ¢) log-gamma density with shape parameter a, location parameter
¢ =log B

Assumptions
1. %, x4, =, X, is a complete random sample from an unknown distribution, but
putatively fx: a, 8) .
2. The xi are statistically independent.
3. The shape parameter d and the scale parameter B are not specified in the
hypothesized null distribution.

The problem addressed here is to determine whether a random sample x,, x .,

-+, X, comes from an unspecified two-parameter gamma distribution.
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3. The Anderson-Darling Statistic

Suppose, on the null hypothesis, that x,, x4, -, x, i$ a random sample drawn

from density
Axia, B) = Fayg [x/81  exo[~x/8l, x=0, @0, B0 )

where I'(a) is the gamma function with argument «@. The unknown parameters
@ and [ are estimated from the data by determining the values of @ and 2.

@ and 3, which maximize the log likelihood
1(a,8) = 2 log f(x;: a,8) @

Maximization of 1,{ea, 8) with respect to @ and £ provides estimators @ and B
for the unknown shipe parameter ¢ and the unknown scale parameter £. Some
care must be exercised in determining @ and B when a{1 . However, several
alternatives to direct use of (1) are generally more useful in practical applications.

One alternative is to make the transformation v = log x in (1) to get the density

gy a,¢) = 7’(_19—) exp [a{y—¢)— exp (yv—¢)] (3)

where
¢ = log j,

and to maximize lgia, ¢)= 2, logg(y. a, ¢) to determine the maximum likelihood
estimators for @ and B. A second alternative is to maximize 1,(a, ¢) subject to

the constraint that the distribution function G(y: @, ¢) corresponding to g(v: e, ¢)

satisfies
Clypya. ¢y =2 1/(n+1) (4)

where 3¢y, Y@, ", ¥y are the y;'s arranged in ascending order. This second

alternative is also olten very useful in working with (1).
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For completely specified f{x:a@, 8) of gamma variates X, X2, ***, X,, the

Anderson-Darling statistic A% is

AL = - 2:1 2-1—7;—1 [log F(xy) + log[1— F(x(41-9)11—n, (5

where

F(x) = foxf(x'r a, B)dx’

and the x(, are the x; placed in ascending order: ic. the order statistics(Lawles:.
1982). However, we are exclusively concerned with the case in which « and &
are unknown and must be estimated from the data. We define f{i to be the
statistic obtained by replacing ¢ and £ by @ and B respectively. In order o
test the composite hypothesis that xy, x», -**, x,,, is a random sampie of failure
times from the gamma distribution via A%, we need the distribution of A% or
given values of n. The distribution of A% also depends on the unknown value of
the shape parameter ¢. We observe that the result a of the process of maximun
likelihood estimation could have been generated by a continuum of unknown
values and this provides the key to constructing an Anderson-Darling test for the
gamma distributior. We shall construct via an extensive simulation, a test in such
a way that the percentage points of A\f, are indexed on the value @ . Tto
following illustration is representative of the general construction and is the bas's
of the construction of a test statistic.

Suppose we simulate 1000 random sample of n=20 gamma variates with shaj
parameters =025 and scale parameters /£=1, 1000 random samples of n=:0
gamma variates with «=0.35, £=1, 1000 random samples of n=20 gamma variates
with @=045, B=1, ..., 1000 gamma variates with =175, B=1. All the variates
are mutually independent. For each random sample determine the tripic
(a, B A%) . Sor the pairs (@, A2) in accordance with @ <0.25, 0.25<¢ a <0.35,
., 095¢ @ <108, ., a> 175 For those pairs (o, A%) with 095< @ <10,

arrange the A% i ascending order. In this interval centered on @ = 1, there will

be a random number of //fi values, N(1), sav. From the order statistics in A "
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we determine the 90 95, 97.5 and 99 percent points of the distribution of A% at
= 1.1t is necessary to simulate from gamma distribution with @ values far
away from @=1 in order to avoid “end effect”. ie., to allow every gamma
distribution which can contribute a realization 095 < @ < 1.05 to do so. Clearly
to restrict @ to (0195 T a =1.05 would not be sufficient.

We carried out this strategy on a much more extensive scale, simulating gamma
variates with S+1 i1 independent samples of size n for a values a= 0.05(0.10)
2505, n=10, 15, 20, 4, 30, 40, 60, 120. For each sample generated, we computed

o, B, ?i\";’, through 13} and (5) and sorted the pairs (2!, A 2 according 1o 0 < a <

0.15, 016< @ < 025 ... Within cach of these intervals the 90, 95, 975 and 99
percent points of 4% n fixed, were computed and plotted against the midpoint of
that interval. These Jdiscrete relationships in the 90, 95, 97.5, and 99 percent point
against 2 were found to be very well-helhaved. Continuous functions of « cre
then produced by firting spline functions to the discrete points. Remarkablv. the
resulting  graphical epresentation of the percentasgze points for testing for the
composite hypothest: of gamma distribution were virtually coincident for all
sample sizes n = 1, These graphical representations also showed that some
additional sampling -vas needed to clarify the values of percentage points {or a
near zero. Additional simulation were used to augment the original simulation
study, Finally, <Figure 17 provides the percentage points of the statistic Zl% for

the composite test ‘o gamma distribution for all sample sizes n =10.

4. A Limited Power Study And An Example

We now examine the power performance of the statistic A2 under alternative
Iife distributions for ‘he sample size n=20 and 60 The following distributions were

considered.

1. Log-normal (i, o'

flx) = - "--17;;: exp [ — (log x—p)*/(2a®], x>0 (6)
xoV i

2. Weihull (e, 8
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f(x) = af % lexp[—(x/B°], x>0, @, B>0 7

3. Uniform (a, &)

flx) = 1/(hb—a),a<x<bh )
4. Beta (p, q)
fr) = (1/B(p,a)x” '(1—x)"", 0<x <1, p,¢>0, ©)

where B(p, q) = I'(p+q+ /(T (D) (@).
5. Extreme Value {b)
f(x) = (1/b)explx/b—exp (x/b)], —oolx oo, b0 (16)

Since x is defined in — o0 {x {0, the variates of extreme value are shifted
to the positive side by 5 times the sample standard deviation of x.

We generated 1000 random samples from each of the alternative distributions
and calculated the ratios of cases that the value of the statistic A% at a@ has its
position above the 95% contour line. <Table 1> shows the corresponding powers

for the significance level of 0.05.

Proschan discusses the life distribution of air conditioners installed in various
fleets of aircraft (1963). He suggests that the total sample of 213 lifetimes does
not follow an exponential life distribution because these lifetimes are characterized
by a decreasing failure rate. Dahiyva and Gurland (1972) suggest, based on their
moment-based sratistic of fit, that these lifetimes are consistent with a
two-parameter gamma life distribution of (1). Our results indicate that the
two-parameter gamma lifetime for these data is not warranted. We find 1he

maximum likelihood estimates ¢ = 0922 with A% = 1.124. Comparing 21\2” = 1124
with the 95 % contour in <Figure 1> at @ = 0922, we clearly reject the null

gammaness of the air conditions data. It is positioned just above the 99% contow

line.
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< Table 1 > Power study of A2

sample size

alternative distributions 20 60
Log-normal (0, 0.25) 0.058 0.086
(0, 0.50 0.081 0.185
0, 1,50 0.375 0.846
(0, 3.00) 0.630 0.988
Weibull (30, 1.O) 0.139 0.308
(15, 1.0 0.057 0.089
(1.0, 1.0 0.045 0.048
{05, 1.0) 0.106 0.277
Uniform 0.0, 1.0) 0.440 0.962
Beta 05, 1.0) 0.258 0.761
05, 200 0.090 0.221
(1.0, 200 0.122 0.479
(2.0, 4.0) 0.078 0.219
Extreme Value (0.5) 0.158 0.359
(shifted) (1.0} 0.140 0.357
3.0 0.134 0.350
(5.0) 0.150 0.344
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