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Optimal Burn-In for a Process with Weak Components

Kuinam J. Kim and Thomas J. Boardman
Dept. of Statistics, Colorado State University, US.A

Abstract

This paper discusses an optimal burn-in procedure to minimize total costs based
on the assumption that some of the components are weak for stress and
deteriorate faster than the main components. The procedure will define the costs
of burn-in errors. An ideal burn-in consists of process in which all weak
(substandard) components and no main (standard) components fail. In practice, the
burn-in errors could occur for some reasons. For example, it is impossible to
eliminate all weak components through burn-in, due to a nonzero proportion of
defectives of the components. Probability model and cost function model are
formulated to find the optimal burn-in time that minimizes the expected total cost.
Several examples are included to show how to use the results. '

1. Introduction

Components are placed on test, usually at least moderately accelerated over
normal conditions, for some fixed time period. The intent, of course, is to discover
and replace the weak components in order to improve reliability measures of
components/systems such as failure rate ( 2(#) ), mean residual life (m(d), and
conditional reliability ( R(x | £)). Washburn (1970) presented a mathematical model
for optimal burn-in time to minimize total-cost. Subsequently many researchers
have presented burmn-in procedures for various cases. Way & Kuo (1983) and
Leemis & Beneke (1990) gave an excellent review of burn-in problems. Overall,
previous work on burn-in procedures and cost models have assumed that the
time—-to-failure patterns of components follow a single distribution law.

In the past, a distributional life model obtained by a bimodal mixture of two



AHAE Optimal Burn-In for a Process with Weak Components 71

Weibull distributions has been suggested to describe the time-to-failures of
electrical and electro-mechanical devices. We will refer to these models as a
two-mixed Weibull distribution. Kao (1959) introduced a two-mixed Weibull
distribution to describe the failure time of electronic tubes. Stitch (1975) found that
the failure time of microcircuits follows a mixed distribution. Reynolds & Stevens
(1978) also found that two-mixed Weibull distribution described the time-to-failure
patterns of elecirome components. For electro-mechanical device, Boardman and
Colvert (1978) found that the failure time of oral immgators follow a two-mixed
Weibull distribution. Other researchers discovered the two-mixed Weibull distribution
1s o be a good model to describe the time-to-failures of many products. The
common bhathtul, cinrve for the hazard function can be modeled by a mixed
Weibull <Figure 1> shows the traditional bathtub curve and <Figure 2> presents
a modified bathiub curve that was discussed by Jensen and Petersen (1982). In
Figures 12, t(«) s the time at which the failure rate reaches the useful region
{chance failure rvegion), #(b4) is the time at which the failure rate reaches the

wear-out region in the bathtub curve and #(*) is the time at which the failure
rate reaches the end of the early failure region under the modified bathtub curve.
Kececioglu (1994) srated that “During burn-in tests, generally early and chance
failures are encountered. Therefore, a bimodal mixed distribution should be used.”
However, no previows work has been done for the optimal burmm-in procedure for
two-mixed Weibull thstribution.

In this study, we present an optimal burn-in procedure for two-mixed Weibull
distribution. The oprimal bum procedure defines the costs of burn—-in errors. In
practice, the burn-n test errors could occur for various reasons; eg. 1t is
mpossible to ehimnate all weak components through burn-in, due to a nonzero
proportion of defectives of the components. Probability model and cost function
mode] are formulated for two-mixed Weibull distribution.

'
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< =igure 1 > Traditional Bathtub Curve



72 ERRAIHA A2474 A4% 1996 12¥

h(t)

0 1(*) tl(a) i) i

< Figure 2 > Modified Bathtub Curve

2. Two-Mixed Weibull Distribution

A two-mixed distribution is composed of two cumulative density functions
(CDF). Let F(t) be the CDF of weak population (small proportion of susceptible
components), Fo(f) be the CDF of main population (the rest of the components).

and F(#) be the total CDF for the entire population. Then, F(¢) is constructed
by taking a weighted average of the CDFs for the weak and main subpopulations.
The weights are the proportions of each type of subpopulation. Thus, if the weak
population has p proportion, and the main population has (1 — p) proportion, then

F(t) = pF\(t) + (1—=pF;(t) ()

Typically, F,(#) has a high early failure rate while Fy(#) has a low early

failure rate that either stays constant or increases very late in life in the equatior
(D).
Assuming that f;(#) is the probability density function (pdf) for F;(#) where

1 = 1, 2, then, the failure rate of the two-mixed distribution is expressed as

pA(H)+ (1= p)f(t)

WO = TR D+ (= p)FR(E) @)

Now, let us consider the two-mixed Weibull distribution with two parameters
for each population. From the equation (1), the CDF of the two-mixed Weibull
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distribution is as follow:

F(t) = 1-plexp[—(¢/7)" ) —(1- p)exp [ —(¢/7)"1) (3)

where

B, = shape parameter of the weak population,
f3,= shape parameter of the main population
7 = scale parameter of the weak populaticn,
7, = scale parameter of the main population

p= proportion of the weak population

When the shape parameter is less than one, we observe a decreasing failure

rate function. When the shape parameter 1s equal to one, a constant failure rate i

observed. When the shape parameter is greater than one, an increasing failure rate

results. le., the shape parameter determines in which failure region a product

belongs. The scale parameter is also called the characteristic life; the point ar

which 63.2% of units will have failed. The shape parameters, scale parameters anc

the proportion of weak population are defined using the following two methods:

Jensen & Petersen method

The method i

1.

(S

Plot the sample: data on Weibull Probability Paper and fit a smooth curve b
nspection.

Determine the place with the smallest slope on the CDF curve (where the
curve levels off), and read the corresponding p value from the Y-axic
(percentage failures). p represents the mixing weight of the subpopulatior:
(weak population) located at the left.

Determine 5; & 77\2 by entering the Y-axis at 0632 % and »+
(0.632(1 - p) horizontally; intersecting the CDF curve and dropping
down,then 7, & 7}2 can be read from the X-axis (time-to-failure).

Determine B, & 5. from the slopes of the tangent lines which are drawn a

each end of the CDF curve.
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Bayesian method

1. Calculate the probability of failure ¢ Dbelonging to the weak and main
subpopulations as follow:

(fl ' tl) H . R B N
AR EADR Main population: p5 =1— 7

Weak population: 271 =

where

\
)

ilt) =2 exp[ =t * (7)) "

(f2 1 )=

S )|
[¢]

xp[= el N (td7) T

(the parameter values are estimated by Jensen & Petersen method)

2. Calculate the proportion of weak failures as follow:

where 7 is the number of failures and N is the sample size.

3. Burn-In Cost Model

The proposal for an optimal burn-in procedure will need to define the costs of
burmn-in errors when the components of failures follow a two-mixed Weibul
failure law. Previous researchers have assumed that there are no errors ol
burn-in. They considered an ideal burm-in occurs when all weak components and
no main components fail. In practice, the burn-in errors could occur for varicus
reasons; it is impossible to eliminate all weak components through burn-in
Components on test during burn-in will either fail or not. In addition, some wili
be from the weak population while others will be from the main population. A tw«
by two table is constructed to show the probability of the events. <Table 1> las
the associated probabilities where
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p = probability that a component is initially weak.

P = probability that an initially main component fails burn-in. This event car
occur when accelerated conditions are too severe and/or the burn-in time
1s too long inder accelerated conditions.

pp = probabilty that an imtially bad component passes burn-in. This event car
occur when the burn-in time is too short or the accelerated conditions are

not severe ¢nough.

< Table 1 > Probability Model for Burn-In

Results of Burn-in Main population Weak population
Pass (1=p)X1-—pg) Dby
[ ail (1— ¢ p(1—pp)

We see from <Tuhle 1>, for example, the probability that a component survives
the burn-in.and was from the main portion of the population is (1 — p)(1 — p¢).

<Table 2> includes the cost function for the situations presented in <Table 1>
Thus for a umt which failed the burn-in test and was from the main portion of
the population, the total cost are the cost for performing the test, Cpg, plus the
cost of replacement and lost value of a good component, say Cgr. Therefore, the
combined cost is the sum Cg+ Cpr. The terms are shown in Table 2 and

defined as

Cy # burn-in cost for a component.

Cer = cost when a main component fails bumn-in. The cost include:
replacemoent cost and loosing the value of a main component.

Cpgp = cost wher a weak component passes burn-in. The cost is a field failurc
cost or repair cost possibly further downstream assembly.

Cpgr = cost when a weak component fails burn-in. This is the replacement cost

< Table 2 > Cost Function Per ltem for Burn-In

Results of Burn-In Main population Weak population

e [R——

[ Fass C‘[; CB + C‘BP

o e e

Frail CB -+ Cr‘(;p CB + (:BF
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In <Table 2>, the costs, Cp+ Cpp and Cp+ Cgr, are from the errors of burn

~-in. Under the burn-in cost model in <Table 2> with the associated probabilities
of occurrence in Table 1, the average burn-in cost of per component, burn-in time
t, 18-

Cav = (1=~ pc)Cp+ ppp(Cp+ Cgp) + (1= 9)pc(Cp+ Cer)
+ p(1—ppCp+ Cpr) ()

For the two-mixed Weibull distribution,

pe=1-expl—(#7,)"] and pp=expl[— (/)] (5

Then, the average burn-in cost for a component in the equation (4) can be
expressed as

Cav = (1—p){expl— (¢/2)%1} Co+ p{expl — (/)" 1) (Cp+ Cpp)
+(1 - p){1—exp[— (t/2) "I} (Cu+ Cer) ()

+p{l—expl — (¢/72)"1(Cp+ Cpr)

The optimal bum-in time is determined to minimize the average burn-in cost
defined in equation (6). In the next section, a method, to find the optimal burn-in
time with minimizing the average burn-in cost, will be presented.

4. Minimizing Total Cost

Basic factors in determining the burn-in time are the failure pattern ol
components , burn-in cost, and costs incurred because of failures during and afier
the burn-in. Therefore, the optimal bum-in time is determined by minimizing the
expected total burn-in cost.

If replacing and repair costs for components are higher than field o
downstream repair costs, an unlikely situation, then aC AV/ at >0 and
62C AV/ at 2 (0 . Thus, Ca4y is an increasing function of # and it is concave

This implies that the minimum average cost is achieved at the minimum burn-m
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time; ie., burm-in time, ?=1(0. Therefore, no burn-in is needed.

If replacing and repair costs for components are much lower than field o
downstream repair costs, then the minimum average cost is obtained at the
optimal burn-in time: ie., t=t(a) in <Figure 1> and <Figure 2>.

Other than thes¢ extreme cases, optimal burn-in time with the minimum
average burn-in costs can be achieved by following method:

Obtain the first derivative of Cyuy as

3Car B t* £\
25an L BLLLN T e — (6} )1 Car— Cp)]
ot =l y) |0 Car Cor
(7)
8o 4 81 / £
+ 2LV exp[ (L) a1 -
,72(,72) p[ (,72) ][ (1= 1]
Then, minimal averige cost is attained at ¢ such that
aCAV .
ot =(. (8)
From equation (7) and (&), we have the following formula:
Biln t= Byln ¢+ (4 7)™ = (¢ )™
(9;

=Ing—Ing +£Ing —Bngp+ In(l—p —Inp+ InCer— In(Cpp— Cyp)

From equation (&), we have the results for determining the optimal burn-in time
of two-mixed Weinull distributions. In order to simplify equation (9), withou
much loss of generality, it is assumed that Cppr=2Cgr and the characteristic life
of weak population is shorter than the characteristic life of main population. Thes:

assumptions lead to

1. If the shape parameters of weak and main populations are the same
( By= By== 4 , this is the special case in practice), then the optimal burn-in

time ¢ can be calculated from the equation {9) as following:
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—— 1472 l CBP )) p772 N
f== % 7 ln 2 : — | + In [ ¥ E— )

2. If the shape parameters of weak and main populations are different (this casc

is common in practice), then the equation (9) can be simplified as following

. 2 B
’ PVA [ e® (1 Cur )) bB1:
(Bo—B)Int+ (=) —(-1) =h|5{F"~ (=B }
=it (L) = (5) = m(F( ,““((1—1»62»1‘ o

The optimal burn-in time ¢ is defined by the solution to equation (11).

Note: For a two-mixed Exponential distribution (a special case of Weihull
distribution with 8;= 8s=1), we have the formula for minimum bum-in time

from equation (9} as follow:

iU/ 1({Csp _ _tm R
3 72— ln( 2 ( CBF 1)>+ ln( (1 —D),h )] (12)

In equations (10) - (12), The optimal burn-in time ¢ is defined under normal
stress conditions.

5. Acceleration of Burn-In

The optimal burn-in time ¢ in equation (10)-(12) is in terms of “ordinary u=se’
times. The optimal burn-in time { may be too long to perform in a factory. In
that case, accelerated burn-in should be considered. The accelerated stress tast
conditions are intended to hasten the times to remove weak components or
systems. The two most important failure accelerating mechanisms are temperatur:
and bias voltage. TFailure data from accelerated tests will be useful if 1
relationship can be established between the time to failure at normal operating
conditions and the time to failure at accelerated operating conditions. Suppose taat

“typical life” of « failure mode is #; at a designed normal condition and # at an

accelerated test condition. Then the acceleration factor A for those two conditiin:

is t; = At,. For example, if A = 100, then 1000 hours of burn-in for a partictlar
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component at the normal condition corresponds to 10 hours of burmn-in under
accelerated condition. The value of A varies with type of components and the
degree of stress under the accelerated conditions.

One of the most useful models relating component lifetime with temperature ha:
been the Arrhenius model. Arrhenius lifetime relationship is (Jensen & Petersen
1982)

t = Cexp(E,/kT) (13

where ¢ is the temperature-lifetime and C is a (temperature-independent
constant. E, is the activation energy ( eV )} which is determined experimentall:
by ohserving the times-to-failure of different batches of components at differen:
temperatures. For semiconductor devices, a commonly cited value for £, is 1.0
eV (refer to MIL-STD-883B, Test Methods and Procedures for Microelectronics)
%k is Boltzmann's constant (electron-volts per Ci and 7T is the absolute Kelvir
temperal:ure‘( “K v (it equals the Centigrade temperature plus 273.16 degrees).
The arrhenius acceleration factor between lifetime ¢ at designed norma:
and lifetime £, at accelerated temperature 75 is defined b:

temperature 17,

{

equation (13) as foliow:
A= t/ty=exp{(E,/R[(1/T))—(1/T)]1} (14)

Example: For a microprocessor, assume that the accelerated test termperature fo:
burn-in is 1257 and the designed normal temperature for burn-in is 55C. The
Ty =556 +273.15 = 32816 °K and Ty = 125+ 27316 = 39816 K. The activation
energy is assumed to be E,=1.0eV. Then the corresponding acceleration facto

is found from equarion (14) as

A= exp{(1.0/8.6171x10 ") (1/328.16) — (1/398.16)]} = 501.

Since the acceleration factor is 501, burn~in for 2 hours under the accelerated test
temperature 1257 <orresponds to burn-in about 1000 hours at normal temperatur:
of 557,

If a manufacturer felt that the estimated optimal burmn-in time under the normel

conditiong is too long, burn-in time under accelerated stress condition using
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equation (14) could be considered. We develop a table of acceleration factors for
different values of normal temperature and accelerated temperature when £,
assumed to be 1.0 (see <Table 3>).

< Table 3 > Arrhenius Acceleration Factors for E,=1.0eV

The Accelerated Temperature (C)

C 125 135 145 155 165 175 185 195 205 215
25 | 17594 | 35033 | 709236 | 135608 | 251731 | 454565 | 799930 | 1374110 | 2307614 | 3793854 |
35 | 49756 | 10161 | 200569 | 38349 | 71188 | 128549 | 226217 | 388593 | 652584 | 107288
45 | 15233 | 31112 | 614072 | 11741 | 2179 | 39357 | 699596 | 118973 | 199798 | 328480
55 | 50128 | 10237 | 202070 | 38636 | 71721 | 12951 | 227910 | 39150 | 65746 | 108091
6 | 176.16 | 35978 | 71012 | 1357.7 | 25204 | 45513 | 8009.35 | 13788 | 23106 | 37986
75 | 6574 | 13126 | 26501 | 50670 | 94060 | 16984 | 208896 | 51344 | 86224 | 14175
& | 2592 | 5204 | 10449 | 19973 | 37087 | 66971 | 117854 | 20244 | 33998 | 55895
% | 1075 | 2195 | 4333 | 8286 | 15382 | 27776 | 48879 | 83965 | 14101 | 23182
105 | 467 | 954 | 1883 | 3600 | 6683 | 12069 | 21238 | 36483 | 61268 | 10073
U5 | 211 | 432 | 854 | 1633 | 3031 | 5474 | 9633 | 16548 | 27790 | 456.83
125 204 | 403 | 770 | 1430 | 2583 | 4546 | 7809 | 13L15 | 21567
135 197 | am | 701 | 1265 | 2226 | 3824 | 6421 | 10557
145 o 191 354 | 641 | 1127 | 1937 | 3253 | 5349
155 186 | 33 | 58 | 1013 | 1702 | 2798
165 181 318 | 546 | 917 | 1507 |
175 o 176 | 302 | 508 | &35
185 j 172 | 288 | 474
19 168 | 276
205 % 1.64

In <Table 3>, the first column is the designed normal stress temperature
{corresponds to 7)) from 25C to 205°C. The first row is the accelerated stress

temperature (corresponds to 7%) from 125T to 215C. For example, if the usua!l
operation high temperature is 75C( 7T, = (75+273.16) °K ) and we wish to jun

our burn-in under stress temperature at 145C( 7y = (145+273.16) °K ), +he

acceleration factor is 265 from <Table 3>. Thus, burn-in for 3 hours at 145%
coresponds to normal high temperature operation for almost 800 hours.
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6. Illustrative Examples

Example 1: Here, we use the example of Jensen & Petersen (1982). A
manufacturer of electronic circuits receives a batch of 1000 CMOS transistors
From previous experience, engineering expects to find approximately p=0.0%
weak transistors in the batch. Assume that the time-to-failure distribution of the
weak population 15 exponential with an mean time to failure equals to 200 hour:
at a test temperature of 125, At the same temperature, the mean time to failure
of main population 1s known to be around 100,000 hours. Past investigatior
suggest the time-to-failure distribution of the main population is also exponential
In this case, the failure rate of the weak components and strong subpopulation are
constants. However. the failure rate of the mixed population decreases throughoul
the early falure period. <Figure 3> shows the {lailure rate curve of this mixec
population. From the shape of the curve in Figure 3, an initial estimate for the
burn-in time 1s between 1000 hours and 2000 hours to reach the useful failure

region.

0.5
45 -4\
04 <+
.35 -~
03 +
025 —+
0.2 -
)15 L
0.1 -
.05 | | | )
0 | | i i
10 100 1000 10000 100000

failure rate, h{t)

time-to-failure, t

< Figure 3 > Bathtub Curve of Mixed Population in Example 1

Now. let us invostigate this example further. What should be the expected
burm-in time for this case? Assuming that A= B=1, 7= 200 hours
’753= 100,000 hours and $=0.05 are reasonable cstimates, then by equation (12)

the optimal burn-in time
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[ C
Suppose that (—55')-——200, then ¢=1577 hours. Thus, the optimum bum-in

time ¢ for the two-mixed exponential distribution is 1577 hours if the ratio of &
field failure cost or repair cost possibly further downstream assembly and the
replacing cost when a bad component fails the burn-in test is 200. The probability
that an initially weak transistor passes burn-in (pg) is 0.000376 and the
probability that an initially main transistor passes the burn-in (1 -— Pe) is 09843
by equation (5). Thus, more than 99% of weak transistors are climinated while
about 98% of main transistors are survived at burn-in time 1577 hours with

minimum total cost.
Now, we can estimate the probability model for Example 1 using the valuo:

»=0.05, pp=0.000376 and (1—p;)=0.98435. The estimated probabilities ure
shown in <Table 4>.

< Table 4 - Probability Model of Example 1 for Burn-In Time 1577 hours

Results of Burn-In Main population Weak population
Pass 0.93513395 0.000018797
Fail 0.01486605 0.0499812

In <Table 4>. the probability that a component survives the burn-in and was
from the main portion of the 1000 CMOS transistors is 0.935132%¢

( (1—pX1— po)) and the probability that a component survives the burn-in enc

was from the weak portion of the 1000 CMOS transistors is 0.000018797 ( pp;)
These imply that 935 transistors out of 950 main CMOS transistors will pass the
burn-in while 1 transistor out of 50 weak CMOS transistors may pass the
burn-in.

<Figure 4> represents the relationship between the optimal burn-in time ! anc
the cost ratio for this problem. The optimal burn-in time is increasing with the
cost ratio. An approximate burn-in time of 1000-2000 hours might be considerec
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depending on the cost ratio of Cpp and Cpgr. The average burn-in cost can be
calculated from the equation (4) if all the cost functions and the probability of the

weak population are assigned.

200 -
[ —
—
o e
E 150 1 ol
= e
£ L/
é 1000 A
3
@ 500 4
0 + + } + + + + + 4 + |

10 100 200 300 400 500 600 700 800 900 1000 1100

Cost Ralio

< Figure 4 > Optimal Burn-In Time ¢ versus Cost Ratio for Example 1

Suppose that E, is 1.0 eV and increase the stress temperature to 215°C from

the normal temperature 125C. Then using equaticn (14) (or reading directly from

<Table 3:»), the acceleration factor is
A=expi(1.0/8.6171x10 ") (1/398.16) — (1/488.16)1} = 216.

Under normal stres:. temperature at 125T, the estimated optimum burn-in time it

Cy
1577 hours if ('I;.CE'):' 200. At the accelerated temperature 2157, t=~1—é—?g—7
w BF

=17.3 hours. Thercfore, burn-in under stress temperature of 215C for about
hours corresponds 1o 1577 hours under normal stress of 125T. This represents «

significant reduction in burn-in.

Example 2: This example is adapted from Kececioglu and Sun (1994). For the
failure data of 19 components from »n=150 CMOS components tested at 1257
and 5V . the estirates of parameters were found using the Bayesian approacl

(Kamath, 1978) as iollows!

po= 0067206 B, = 162, 7 = 535 hours, B» = 43, 7, = 8250 hours
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Our goal is to estimate an optimal burm-in time with minimum total average
burn-in cost from the above estimated parameter values. Assuming that the
Bayesian estimates are reasonable estimates, then from equation (11), we have

Come () () —i(3(E=-1)

(]

4 ln( 0.067226 % 1.62 % (8250)*° )
0.932774 x 4.3 % (535) 18

C
Now, suppose that ( CBP )=200. that is cost of field repair is 200 times the cost
BF

for replacing bad component. Then optimal burn-in time is approximately ¢= 2092
hours.

Let us now consider the probabilities of errors during burn-in. The probability
that an initially weak component passes burn-in ( pp) is almost zero and the
probability that an initially main component passes burn-in ((1— pg)) is 0.967:
by equation (3). The results imply that more than 99% of weak components :r¢
eliminated while about 99% of main components are survived through bum- ir

with minimized total cost. Now, the probability model for this example is shown
in <Table 5>.

< Table 5 > Probability Model of Example 2 for Burn-In Time 2092 hours

Results of Burn-In Main population Weak population
Pass 0.9302231 0.00000667
Fail 0.0025509 0.06721932

From <Table 5>, we see that the probability that a component survives the
burn-in and was from the main portion of the population is 0.9302231 ({1- p)(l-

b)) and probability that a component survives the burn-in and was from 1he

weak portion of the pepulation is 0.00000667 ( ppg). Since f)\= 0.067226, the weak

components are 10 components out of 150 tested components (0.067226150 % 150=10
and the main components are 140 components out of 150 tested components ((1
0.067226) X 150 = 140). Thus, almost all weak CMOS components (10 componenis
are eliminated and about 10 components from 140 main components are darnagec
after 2092 hours of burn-in.
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<Figure 5> represents the relationship between the optimal burn-in time ¢ and
the cost ratio for this problem. The optimal burn-in time is increasing while the
cost ratio is increasing and an approximate burn-in time of 1700-2300 hours might

be estimated depending on the cost ratio of Cgp and Cgg.

2500 o
-
p _’F,Jv—f"*
o 2000 -+
£ e
= s0n 1
£
S wou 4
@
500 4
0 4 + + + + 4 + } + e |

10 100 200 300 400 S00 600 700 800 9S00 1000 1100

Cost Ratio

< Figure 5 > Optimal Burn-In Time ¢ versus Cost Ratio for Example 2

Suppose that [, i3 1.0 eV and increase the stress temperature to 215C. Ther

using equation (14), acceleration factor is

A=exp{(1.0/8.6171<10 ) [ (1/398.16) — (1/488.16)]1} = 216.

Under the stress temperature at 125C, the estimated optimum burn-in time is
o Cee ) 0
2092 hours if (Z_”): 200. At the accelerated temperature 215C, f== ié%z- =
L Copp
9.68 hours. Thercfore, burn-in about 10 hours under the accelerated temperature
215C corresponds ty burn-in 2,092 hours at temperature of 125°C. This represents

a significant reduction in burn-in.

Example 3: A life test carried out on a sample of 30 electronic systems (Jenser
& Petersen, 1982). Using Jensen & Petersen method and Baysian approach, the
estimated values wore obtained as follows:!

p =018 B, - 075, 7, =20 hours, B, =10, 7 = 2200 hours
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From the analyses, they estimated approximate burn-in time 48-72 hours for
eliminating about 90% of the weak population. Let us assume that 48-72 hours are
reasonable estimates. Then, the estimation of the probabilities that an initially

weak population is eliminated through burn-in (1— pg ) and the probabilities that
an initially main population passes burn-in (( 1 —p.)) are shown in <Table €~

In <Table 6>, the first column shows the burn-in time from 48 hours to 72 hours
in a fixed interval

< Table 6 > Probabilities of (1—pg) and (1— ps) for 48 hours
to 72 hours of burn—in

Burn-In Time 1—p5 1—>p¢
48 0.85459440 0.97841811
52 0.87094657 0.97664079
5 0.88519893 0.97486669
60 0.89766536 0.97309582
61 0.90860441 0.97132316
63 0.91823084 0.96956371
7 0.92672430 0.96780247 |

From <Table 6> we see that the probabilities of main systems passes burn-i
decreases and the probabilites of eliminated weak systems increases when the
burn-in time increases. The results imply that about 85-93% of weak systems (e
eliminated while about 97-98% of main systems are survived through 48-72 hour
of burn-in without considering burn-in cost factors. Therefore, the estimatix
bum-in times by Jensen & Petersen are reasonable for eliminating about 909 !
weak systems. For this example, the optimal burn-in time with minimum cost 1
calculated from the following:

NP e N (L Cee 0.18x0.75 % 2200
(().25)1nz‘+(20) (2200)“‘1n(2(cm~ 1))+1n( e )

C . . . .
Now, suppose that (CBP)=10, then optimal bum-in time 1s approximated.
BF

t=127 hours. Then, the probability that an initially weak system is eliminated
through burn-in :s 0.982 and the probability that an initially main system passes
the test is 0.944 by equation (5). This result implies that more than 98% of wealk
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systems are eliminated while about 94% of main systems are survived through
burn~in. Using Jensen & Petersen’s solution, about 85-93% of weak systems were
eliminated and about 97-98% of main systems were survived through 48-72 hours
of burn-in without considering burn-in cost factors. Even though the optimal
solution has longer burm-in time and less surviving main systems, the optimal
solution is better choice than Jensen & Petersen’s solution since the total cost is
the minimum and eliminating weak svstems’ probability is very high.

For the whole tested systems, we construct probability model as in <Table 7>.

In < Tahle 7>, the probabilities are for the whole svstems.

< Table 7 > Probability Mode! of Example 3 for 48 hours to 72 hours of Burn-In

Burn-In Time (1=p) (1—pg) Py (1—pbe p(1—py)
R 080230285 002617301 | 0.00388474 0.15382699
5 DRSS 00232292 | 0.00420466 015677038

54 079139069 0.02066419 0.00452400 015933581
e 079793857 001842024 | 0.00484275 0.16157976
; 61 1 079615909 001645121 0.00516093 016354879
| 6 | 079504224 0.01471845 000547853 016523155
9 | 079459803 0.01318963 0.00579556 0.16681037

“Table 7> shows that main electronic systems pass the burn-in are about 80%
of tested electronic systems while weak electronic systems pass the burn-in are
about 2-5% of tested electronic systems. Thus, about 82% of tested electronic
systems pass the 46-72 hours of bum-in.

The estimated probability model of the optimal solution is defined as in <Table
&>, <Table 8> shows the estimated probabilities for each possible event during

127 hours of burn-in,

< Table 8 > Probability Model of Example 3 for 127 hours of Burn-In

1 Results of Burn-In Main population Weak population
, Puss 0.77400402 0.0032962
Fatl 0.01009668 0.1767038

<Table 8> shows that main electronic systems pass the burn-in are about 77% o

tested  electronic systerns while weak electronic systems pass the burn-in  are
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about 0.3% of tested electronic systems. Thus, about 77% of tested electronic
systems pass the 127 hours of burn-in.

Now, let us compare the <Table 7> and <Table 8>. Weak electronic systems
pass the burn-in are about 0.3% of tested electronic systems for the optimal
solution <Table 8> and about 2-3% of tested electronic systems for Jensen &
Petersen’ solution <Table 7>. Damaged main electronic systems from burmn-in zre
about 1% of tested electronic systems for the optimal solution <Table 8> and
about 0.3-0.5% of tested syvstems for Jensen & Petersen’ solution <Table 7>. In
practice, the cost of passed weak population from burn-in is much higher than tne
cost of damaged main population from bum-in. Therefore, the optimal solution i
prefered for this example for the purpose of minimizing the cost and eliminating
maximum weak systems.

7. Conclusion

We open encounter the reliability situations associated with weak (defective) and
main (strong) subpopulations for many components. In these situations, eliminating
the weak population should be done to improve reliability of components. In this
paper, burn-in probability model and burn-in cost model were formulated to find
the optimal burn-in time for a process with weak population. The new modei
includes the errors of burn-in and corresponding probability. The optimal burn-ir
time is determined to minimize the total burn-in cost.

When a process has mixed population, weak population fails faster than main
population for stress. Thus, the characteristic life of weak population is much
shorter than the characteristic life of main population. Under this assumption, three
formulas were proposed to find the optimal burn-in times for three possible
different situations. The proposed formulas will perform well as long ac
moderately accurate estimated parameter values are used. As shown in the
examples, the optimal burn-in time for a product depends on the ratio of a firle
failure cost (or repair cost possibly further downstream assembly) and the
replacing cost. Therefore, defining these costs should be done before planning &
burn-in procedure.

The findings of this study can be used by a reliability engineer or analyst as «
guide for planning an optimal burn-in procedure for a process with weak
population.
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