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Abstract

For highly reliable devices it is often defined to “fail” When) its performance
degrades below a spe01f1ed value. In this paper we consider a method for
optnnally de31gn1ng accelerated degradatlon tests(ADTs) in which the performance
over exposure tlme and stress has Welbull distribution. For the product whose
performance has Weibull dlstnbutxon the optimum plan - low stress level and
sample proportions allocated to each test condition - is obtamed, which minimize
the asymptotic variance of maximum likelihood estimator of a stated quantile at
design stress. We also present comprorruse ADTs plan that can be used for the
practical purpose.

* This paper was supported in part by NON DIRECTED RESEARCH FUND, Korea Research
Foundation, ‘1994.
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1. Introduction

Accelerated degradation tests(ADTs) have some advantages over accelerated lize
tests., Performance degradation data can be analyzed earlier before any specimens
fail. This is done by extrapolating performance degradation to estimate a lifetime
when performance reaches a prespecified failure level. ADTs can give a goc:l
insight into the degradation process and how tc improve it. ADT models ar¢
presented by several authors. Nelson(1981) provided an Arrhenius model ar«
analysis for the breakdown strength data of electrical insulation. ADT models fir
some applications are treated in detaill by Ballado-Perez(1986), Carey ard
Koenig(1991), Lu and Meeker(1993). Boulanger and Escobar(1983) provide«l
optimum design of ADTs under the assumption of sigmodal growth curve having
random measurement error. Optimum designs of ADTs having three experiment.il
pointswere developed by Park(1993) and Lee(1995) using numerical searches.

In this paper we consider the optimum design of ADTs in which performance
value of a specimen has Weibull distribution, which is widely used as the lifetin«¢
distribution for many products. Performance of a specimen is assumed to L
measured only once at one of three test conditions including the measurements .t
the beginning of tests in an ADTs. which is called 3-point test plan, and at one
four test conditions in another ADTs which is called compromise test pla
Maximum likelihocd(ML) method is used to estimate model parameters. The
optimality criterion is to minimize asymptotic variance of ML estimator of a stated
guantile of lifetime distribution at design stress.

The ADT model is presented in Section 2 and the procedure of estimating
model parameters from degradation data is described in Section 3. In Section 4
optimum designs for the 3-point and compromise test plan are presented and in
illustrative example is also given.

2. The Model

In this section we consider the ADT model in which the degradation process is
characterized. The assumptions of the model are

1. At any cotress s and exposure time t, the distribution f
performance U; (s, D, I=1, 2 -, n, is Weibull and U;'s are independentiv

distributed. Thus log performance Y, = InlU; has the smallest extrerie
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value distriburion.

2. The scale parameter & of log performance is constant, ie., independent
of stress and exposure time.

3. The location parameter A is a characteristic parameter and dependent on stres:
and exposure time. The relationship among the location parameter A, s and ¢

1S
Alt,s) = ¢ — Bt exp(—7y/s), t=0, a>0, B>0, 7>0. (n

For designing tes! plan it is also assumed that specimens are tested at only tw-
accelerated stresses and high stress 1s specified as the highest possible stress for
which the assumed model is expected to hold and the longest possible exposur:

time f is pre-spec fied.

The following 3-point ADT plan for total test specimens n is considered:

1. Performance of nm, specimens randomly chosen from population are measure
at the beginning of the test and design stress sg.

2. Performance of nm; specimens randomly chosen from population are measure:!
at exposure tirne ¢ (0<¢< #') and low stress S1.

3. Performance of #nr, specimens randomly chosen from population are measurel

at exposure time ¢ and high stress ss.

The following 4-point ADT plan. which is called compromise test plan, is also
considered:

1. Performance of np, specimens randomly chosen from population are measured
at a half exposure time ¢ = /2 and low stress s; = (83— 59)/2.

2. Performance of #np, specimens randomly chosen from population are measured
at exposure time £ and low stress s, = (:5— 85)/2.

3. Performance of #spy specimens randomly chosen from population are measured
at a half exposure time ¢ = £/2 and high stress s,.

4. Performance of np; specimens randomly chosen from population are measure:d

at exposure tiine ¢ and high stress s,.
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The object of an ADT for highly reliable products is to obtain performance data
in a limited time. In particular, the above 3-point test plan is useful for the
experimenter who wants to carry out the ADTs as simple as possible. The
performance data is extrapolated to estimate the lifetime distribution at desizn
stress. The optimum 3-point test plan specifies the optimum low stress, exposure
time and proportions 7y, 7, and m, (=1-7,— ;) allocated to each test conditicn

The optimum plan of compromise ADTs specifies the optimum proportions

P by Py and Pyl =1—p—po— #3) allocated to four test condition, respectively

3. Estimation Procedure

In this section we present the method of estimating lifetime distribution and 1«
quantiles at design stress using performance data from ADTs. Let Y(# s) be tae
random variable denoting the log performance at exposure time t and stress s. ] et
lifetime T at stress s be a random variable denoting the smallest time at whih

Y(¢ s) goes below a design value y; and failure of the specimen occurs. And

denote the distribution of random variable T as F (¢ s).

Ftsh = Pr [Y(¢4s) < y; ]
= Pr [(Y(£,)=A(t,s)/6 < (3= A(£,9)/8 ]
= P (yo—a+pt exp(—7/sN/S ],

S

where ¥( -) is the standard extreme value distribution function. The distribution
function of T is as follows.

Fts) = Pl(t—Ap)/ 67 ] if t=20
= if t <0, 3

where Ar=[(a- y)/B lexp(y/s) and 8r=(8/p) exp(y/s).
Let p, be the probability that a specimen fails at the beginning of tests anc

design stress s
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The relationship between ¢ and p, is

a—y, = —08z(p) . (4
where 2(p;) is the 100 pf”' quantile of standard extreme value distribution.

The 100 qth quantile of the lifetime distribution at design stress s, say #,, is

t, = [(a—yy+82(q))/ B lexp(7/sy) ifg = p,

=0 ifq < p,. (5

The maximum likelihood method can be used to estimate the parameters «,8,7
and & from performance data.

The MLE of ¢, it

~

f, = [ a—yo+32(a)/ B lexp(¥/sy) (©:

where @, B, 7, and & are MLEs of «,8,7 and &, respectively.

It is convenient t¢ define a transformed stress x; = 1/s,, 7 =0, 1, 2 and the
standardized stress 7= (x—x9)/(x;—x). Then n=0 for high stress s, and 1=1 fo-
design stress s, W2 also define standardized exposure time T= ¢/ ' (0<t<1). Then

A(¢ s) in formula 1) may be written in terms of z and 7 as
AMz,n) = ay— Byt exp(—77y) (7

where a; = a, By = Bt exp(—x7), 7o = Hxy—x), and & = 4. (&

The 7‘; in formula (6) may be written in terms of estimates Zz\o ,/B\O . %0 » Oy a

[ 2y — v+ 8 2(g)]exp (7). (9

The log performance Yz, ), [=1, 2, -, n, are independent and identicall"
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distributed under the same test condition. The p.d.f of a random variable Y{(z »:

for a single observation 1s

Ayr = (1/8p) exp((y—A)/8y) expl—exp((y—A)/d)].

(10)

The log likelihood function ,£, of an observation {z,7) at a transformed tos:

condition (7, n) is

£=—Ind + w — exp(w),

where w=[y—a,+ 8y v exp(— 77y 1/6,.

For a single observation, the first derivatives are

0L /oay = —1/8+(1/8p) exp(w),
0L /0By, = Bfé—(B/&) exp(w),
0L /dyy = —(28B)/ 8+ (nB,B/ 8, )exp(w),
0L /38, = —1/8— w/dy+ (w/d,) exp(w),
where B = 1 exp(— #yy), and the second derivatives are
3’2 [day = —(1/8) exp(w), 9*2/3B5 = —(1/85)B* exp(w),
6‘24“1 /8')’.‘; = (1/63) 772,803{ (80+ B()B)BXD(ZU) - (3\0},
322738 = —(1/ N w(w+2) exp(w) —2w — 1),

3%t [ daydBy, = (1/89)B exp(w),

3LL [ dayiyy = —(1/88)nBB exp(w),

0% [ dayid, = —(1/8){(1+ w) exp(w)— 1},

3°L [ dfucry = —(1/65)nB{ 8~ (8y+ ByB)exp(w)},
2L [ 3Byidy = —(1/8)B{1—(1+w) exp(w)},

%L 197,08, = —(1/85)nB,B{(1+ w) exp(w)—1}.

1

0
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The following facts are useful to obtain Fisher information matrx.

(i) E(W)=-—4, (ii) E(exp(W))=1,

(i) E(Wexp W))=1—6, (v)E(W?* exp(W))=7"/6 + 6 — 26, (1}
where 6 is Euler's constant (8=0.5772---) and W has a standard extreme value
distribution whose p.d.f is exp(w-—exp(w)), —oo{wlo .

The following F(r,7) for an observation will be Fisher information matr.x
whose elements are negative expectations for the second partial derivatives in (13

1 , symmetvic
F == (1/8% —B B Wy 3)
(T, 77) (1 o) ﬂBOB '_'”BOBZ 7 ,3532 | (1 )
1—8 —B(1—6 8B (1—6) ©*/6+(1—6)°

The inverse of Fir,7) is an asymtotic covariance matrix, V, for «, 8,7 ard

S. That is,

var(ay) symmetric
V=F"Yr, )= cov(ay, Bo)  wvar(By) (1

co(ay, 7o) co By, 7o) varl7y)
cot( @y, 8p) col By, 8q) co 7y, Bo) var(Sy)

Let H be a colunin vector as

_ (.9t A, 9t ot
H— (Gao'aﬁ‘_)’ayo’a(So)

= £ B texplyll, — 8¢ B (2(g) — 2(p)), & o(2(q) — 2(p), @Y. (1)

Then the corresponding asymptotic variance of the MLE E, 1s of the form

Asvar(t,) = H VA, (14
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where the prime denotes a vector transpose.

4. Optimum Test Plan

4.1 3-point optimum plan

In the 3-point plan nx; specimens are tested at the transformed test condition
(0,1) and wm; specimens at (1,7) and wmm, specimens at (z,0). Fisner

information matrix, Fy, for our 3-point plan with a sample of n independort

observations is as follows ;

1?() = erF(O,l)+n7r1F(1, 77)+n7r2F( T ,0)
/i _
= (n/s é) Fa S Symmetric (1)

I f32 f3
Ia f Ia fu

where fyy =1, fa=—(mC+m, fp=mC'+mt fy=m18:,C, fo=—mnbB"
fu= my BC, fa=1-6, fp=—(1—0(n C+md), fz=mu8,C(1—-4a,

fu=7/6+(1—@)?% and C= exp(— 77,).

The asymptotic variance of a ML estimator can be obtained from the inverse ¢f

Fisher information matrix. Let p, and p, be the probabilities that a specirnet

will fail at maximum exposure time ¢ under stress x, and stress xj, respectivelyv

From (3) and (1), we have

Bt expl —xo7l = 8(2(py — 2(p)),
Bt expl — xo7] = 8y(2(pr) — 2(p1). 200

And from the relationships in formula (8), we have
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@ o= yy— & o2(p)),
Bo= & o(2(ps) — 2(p)).
v o=In[(2(p,) — 206N /(2(p) — 2(p)]. (21

The asymptotic variance of tq is a functin of 7,r,7;, 1 and model

parameters. The otimality criterion is to minimize the asymptotic variance of M].

estimator of ¢,. It can he known from our numerical searches that optimum valu

of ¢ minimizing the asymptotic variance is 1. This results is similar to minima:
(D-optimal) design problem of linear model. OQur design problem is induced a-

follows:

(rivenn the value. of gq, pn pg and py,, find the values of my, 7 and 7

minimizing the asymptotic variance of i,

The powell algorithm(1964) for finding the minimum of a function without using
derivatives is used to solve the design problem. We have chosen the values

pr=1%10"°, 2%10 2, 4%107° and p,=5%10"°, (%1074, 1.5%10 ™" and p,=0&
0.9, 0.99. We have also chosen the values ¢=0.01, 0.05, 0.1. The optimum value:
of my, 1, 5 and asvmptotic variance are in <Table 1> for the chosen values of
Py Py, Py and q. It can be known from <Table 1> that 1) the larger is the
value of p,, the smaller are the values of 7rf and 7", and also the larger is the
variance of /Z\q Z2) “he larger is the value of p,, the larger are the values of
and 7", and also the smaller is the variance of Fq 3) the larger is the value o:
Py, the smaller are the values of 71'8, 7" and varance of /z‘; and also the large-

is the value of =)

4.2 Compromise test plan
Nelson(1990, p. 326) pointed out the drawbacks of optimum test plan. W

consider compromise test plan to avoid these drawbacks, in which #np; specimen:
are tested at the transformed test condition at (1/2, 1/2) and  np, specimens at (]

1/2), mpy specimers at (1/2, 0) and #np, specimens at (I, 0). The Fishe
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information matrix , F,, for compromise test plan with a sample of n independent

observations i1s as lollows ;

F. = npF(1/2,1/2) + np,F(1,1/2) + np F(1/2,0) + npy F(1,0)

i
= (n/83) fa fr  Symmetric @n
T S I I

f4] fiZ f43 f44

where  fu=1,  fa=—(01CH+p,CHpst+ 1),  fo=017C+ p,C°+ py+ 1.,
Fu=nB8yC(prr+ 1), Fo=—nBCHpiT+py), fu=n"BCHpT"+ ), fr=1—9.
fo=—(1=0(p1C+ psC+ pyr+ py), fis= (1= O 98,C(p1r+ po),
fu=m16+(1~80" and C= exp(— 77y).

The optimum proportions at four test conditions are determined for the sanic
values p; ps p» and g in Subsection 4.1. We obtained optimum plan for
compromise test in <Table 2>. It can be known from <Table 2> that 1) the
asymptotic variance of ML estimator fq is larger than that of optimal 3-poinat
test plan, 2) the larger is the value of p,, the larger are the value of p] and the
variance of t ard also the smaller is the value of p;, 3) the larger is the valie
of p,, the smaller are the values of pf and the varlance of Z, and also the

larger is the value of pg*, and 4) the larger is the value of p,, the smaller is the

variance of 1,

4.3 An illustrative example

Nelson(198]11 geve measurement data on  dielectric  breakdown strength i
insulation specimens. The design stress is 150C in the ADTs. We considered fir=t
3-point plan. If we want to estimate the 10th percentile of lifetime distribution

design stress, and the pre-estimates of p;, pg, p, are 0.8, 1.02107% 4x10 -
respectively, then optimal low stress level 7° is 0.408 and optimum proportions re

7, =0.288, n7=:11.584 and ;=0.128 from <Table 1>  When high stress i=
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specified as 275, optimum low stress is 224C. Asymptotic variance of Mj.
estimator of 10th percentile in this optimum design is 506. In the case of
compromise test plin, the optimum proportions are optained from <Table 2> a-

p1=0.132, p5=0.456, and p3=0.312 at the same values of pre-estimates i

3-point test plan. And asymptotic variance of ML estimator of 10th percentile in
this design is 98.1. which is larger than those of optimum 3-point plan.

( Table 1 > Optimum test plans for given values of p, ps p, and gq.

peo= 1x107° pr = 2x107° by = 4x107°

a0 b bal-
Ty T i var Ty 8} 7 vayr Ty V8] n var
801 .00005| 295 294 497 43.3] 295 576{ .398| 57.8] .299| 550 .259| 114.1

! .00m 200|619 606 32.7| 288 .603] .513| 387 .288| 584 408 506
00015 273 699| 892] 218 267 681] 796 229| 262 663 697 247
B0 00005 2920 596 490 424 202| 578 .393] 56.0f .297| 551 256| 1089
01 0001 285) 621 B95| 322 284) 605 505 37.8| 285 586G .402] 490

00015 266] .700; .870| 21.5| .261| 682 .777| 22.8| .256| .665] 681 24.4
99 .00005) 235 58 477) 406 286 581 384 528 .293| 554 2521 99.9

0001 2770 625 576 313 276) .609] 190 363 .278| 580 393 46.2
‘ 00015] 2537 702) .830| 21.4| .248) .686| .743| 225 .244| 669 654 24.0
80 00005 320 573 .497) 529 2317| 58] 308] 790 315] 537 25| 1804
0001 321 5920 606| 36.0| 317, 578! .513| 47.4| .314] 5621 .408| 70.7
00015 324] 649) 892 181| 318 633] 796 21.0{ 313| 617 697 251
90 00005| 317| 575, 49| 51.4| 314] 560 .393| 760! .313| 538 256| 1714
05 0001 317y 584 8950 352 314 5BO| 305 46.0f .312| 564 .402) 679

- 00015 3138|6300 870] 180 .313| 634 777 20.7) .308| 618 681] 247
990 00005 311 577 477 486 310 562 .384| 70.8] 310 540| .252| 1559

000t S0 5%‘ 576 337 .308) 5821 .190| 435 .306| 566) 393 63.1
00015) 307, 632) 830 17.8| .302] .637| .743| 203| .299| 621 634 238
8017 0000s] 327] 567 497] 596| 324 553 308] 919] 320] 534 230] 2173

0001 | 331, B84 606 39.5] 326 571 513] 538 322 536 08| 3.3
000150 3100 e3n 8wzl 180| 3330 619 96| 217 28] eod| sor| 273
9000005 323 S6% 490 577 321 554 393) 883 318 535 256| 2063
1000001 | 227 5% 595 385| 323 572 505 521 3200 557 402 79.9
00015 334 63 870| 179 32| 620] 777| 215 .323| 605| 681 267
9900005 319 570 477 544 317 566 384 820| 315 536 252 1875

| 0001 | 3200 587 576 367 317| 574 .190| 49.0| 315 559 393 739
00015 323 ' 176 318 622) .743] 209| 314] 608| 634] 256

W

L2
x
Lo
=1
o0
98]
S
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(Table 2> Compromise test plans for given values of p;, ps p, and ¢.

p = X107 b= 2x10°° b= 4x107°

a Py Da +
21 Pal D3 | var| Py | by | b3 |var| Py | Do | D3| var .
801 00005| 082 473| 348 683] .141] .447| 309] 1206] .230] .418] 248 575.('ﬂ
0001 000 504 404) 425 .052) 477| 370 57| .132| 456 312{ 98.1
000151 0001 664 201] 245 0001 659 327 251 0000 617 3550 27.%
90 000051 072 469 357 667 141 447 309| 117.1] .229] 418} .249| 556.0
01 0001 Q00 505 .402| 41.6] 053] .478| 368| 55.7] 125 .452] 319| 95.1
00015 Q0 667 288 24.2] 000| .663] .324| 24.7) 000} .620] 352 263
99| 00005 (71 470 .356| 63.6] .140| .448] 308| 110.9| .228{ .418| .248| 2322 1
0001 000F  B07) .309] 40.0{ .056] 482 .362| 53.1y .124| .453| 317 89«:
00015 000 674 .282| 235 .000] .669| .318| 24.0; .000| 626 .346] 250
B0 00005 113 457 .334) 101.21 172] 441 .290] 195.7| .241] .415| .242.| 1000. 8
0001 0511 479 378] 5820 100| 461 .344] 87.0; .158| .441| 302} 1671
00015] 000 604 378 24.00 006| 565 385 284 0000 515 406 357
901 00005 .111] 456] 336] 984 172 4417 .290) 189.8 .240| 415! .243] 967.7
05 0001 081 480] 377 367 100] 461 .343] 845 .158] 441 .301| 162.0
000150 000 604 377 23.5] .006] 565 3&4, 27.7] .000] .516| 405 347
09| 00003 1120 457 .333) 934 172] 442 .288| 179.3| .240| 415 242 909.V
0001 049 479) 377) 539 0990 .462| 341] 80.0| .157] 442 300 152.5)
000150 000] 496 487 23.4| 004 b566| .382| 265 .000] .517| 401 32}»)‘[
B0 00005 129 455 .324] 120.5| 1741 436 292| 2376] .243| 414 242 1228.&4.
0001 06l 4710 375 685 114) 457 336] 105.2] 172 440 .292] 2072
00015 003 5731 3910 2677 000 532 .406] 32.8| .008] 494 411 423
901 00005 127 454 .325) 117.1) 174 4361 .292| 230.4| .2437 414 242| 1188.7
10 0001 062 471 373 667 114y 457 335 10211 1727 4411 291 200.5
000150 .003] 5737 .389] 26.0] 0001 532] .404] 319 .008| 494 409 41.5
991 00005 128 455] .323| 111.1| 1741 436 .291| 217.6| .243| 414] 241 11173
0001 064 4720 3700 633 112) 456| 335 9650 172| 4417 .290| 188.7
00015 0020 573|387 24.8] 000 533 401] 303] .005 .494; .409] 39.2

5. Concluding Remarks

We presented optimum ADTs plans in which the performance value of a test
specimen has Weibull distribution. we have optained optimum low stress, exposurt
time and proportioms to each test condition which are determined numertically



3ty - o]ty ol EA T EEY 45 /HSEEA 9] XA 44

minimize the asvmptotic variance of the MI. estimator for a stated guantile of the
lifetime distribution .t use condition.

We have also obiained the compromise test plan. In the case of compromise
test plan the proportions at four test conditions are determined numerically by the
same optimality crterion in 3-point plan.

Optimum ADTs yplans can be used in a kind ol destructive tests in which the

performance of & test specimen i1s measured only ai a particular inspection time.
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