ON THE FAMILIES OF PLANE QUARTICS DEGENERATING TO A PLANE QUARTIC WITH AN ORDINARY CUSP OF MULTIPLICITY THREE

Pyung-Lyun Kang

There are up to projective equivalence two quartics with an ordinary cusp of multiplicity three[5]. Their equations are $x^{4}-y^{3} z=0$ and $x^{4}-x^{3} y+y^{3} z=0$.

We say that $p: X \rightarrow \Delta, \Delta$ the unit disk of \mathbb{C}, is a right family of plane quartics degenerating to C if all the fibers over $t \neq 0$ are nonsingular plane quartics and generically projectively independent with $X_{0}=C$. This family always gives a morphism ϕ from $\Delta^{*}=$ $\Delta-\{0\}$ to a punctured arc in \mathcal{M}_{3} the moduli space of all isomorphism classes of all genus three smooth projective algebraic curves which is defined by $\phi(t)=\left[X_{t}\right]$ the isomorphism classes of X_{t}. In this paper, we compute a stable curve of genus three whose isomorphism class is the limit point $\lim _{t \rightarrow 0}\left[X_{t}\right]$ in $\overline{\mathcal{M}}_{3}$ and show that it lies in \mathcal{M}_{3} except the case that the total surface X has a triple point. We call this limit point the stable model of C obtained from X. The proof can be divided into two parts. One part is to find the desingularization \tilde{X} of X with the new fiber over $t=0$ a connected divisor with normal crossings. The other part is to replace the central fiber with a semistable curve (the semistable reduction theorem $[1,4]$). A semistable curve is a nodal curve without smooth rational components of self intersection number (-1). Contracting the rational components of self intersection number

[^0](-2), we get a stable curve. In this paper, the proof of the second part will be shortly sketched since the similar proof have been done in [2] and [3] by the same author.

We fix that C is a plane quartic with an ordinary cusp of multiplicity three given by either equation $f(x, y, z)$ in the above, $P=(0$: $0: 1$) the singular point of C and X the right family of plane quartics degenerating to C. Then the equation of X is given by

$$
F(x, y, z)=f(x, y, z)+t g_{1}+t^{2} g_{2}+\cdots+t^{n} g_{n}
$$

where $g_{i}=g_{i}(x, y, z)$ are homogeneous functions of degree 4 and $g_{1} \neq 0$. Since X is a right family, $\partial F / \partial x, \partial F / \partial y, \partial F / \partial z$ cannot simultaneously be zero. Therefore the singular points of X can occur along $t=0$. From the following equations

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=\frac{\partial f}{\partial x}+t\left(\sum_{i=1}^{n} \frac{\partial g_{i}}{\partial x}\right), \frac{\partial F}{\partial y}=\frac{\partial f}{\partial y}+t\left(\sum_{i=1}^{n} \frac{\partial g_{i}}{\partial y}\right) \\
& \frac{\partial F}{\partial z}=\frac{\partial f}{\partial z}+t\left(\sum_{i=1}^{n} \frac{\partial g_{i}}{\partial z}\right), \frac{\partial F}{\partial t}=g_{1}+2 t g_{2}+3 t^{2} g_{3}+\cdots+n t^{n-1} g_{n}
\end{aligned}
$$

X is nonsingular if and only if the curve $g_{1}=0$ does not pass the singular point of C, which in the present case is equivalent to $g_{1}(P) \neq$ 0 . If X is nonsingular, the stable model of C obtained from X is a smooth curve from the usual stable reduction [2].

Now assume that X is singular, i.e., $g_{1}(P)=0$. We remark that X can be considered a right family unless that P is a singular point of the curve defined by g_{i} for all i. Since X has only one singular point $(0: 0: 1)$ with $t=0$, we can work on the neighborhood N of $z=1$. We also work with $f(x, y, z)=y^{3} z-x^{4}$ since the term $y^{3} z$ does not affect any other things except the total transform of C. We write $g_{i}(x, y, 1)$ as $g_{i}(x, y)$.

Let X be the family given by

$$
y^{3}-x^{4}+\sum_{i=1}^{n} t^{i} g_{i}(x, y)=0
$$

It has the only singular point at origin $P=(0,0,0) \in \mathbb{A}_{(x, y, t)}^{3}$. From our choice as mentioned above, $(0,0)$ is not a multiple point of $g_{i}=0$ for some i.

The case that P is a double point of X. Then X can be given by

$$
\begin{aligned}
F(x, y, t)=y^{3}-x^{4} & +t\left(b_{10} x+b_{01} y+b_{20} x^{2}+b_{11} x y+b_{02} y^{2}+[3]\right) \\
& +t^{2}\left(c_{00}+c_{10} x+c_{01} y+[2]\right)+t^{3}(\cdots)
\end{aligned}
$$

where at least one of b_{10}, b_{01} and c_{00} is not zero. Let $\pi_{1}: \tilde{\mathbb{A}}^{3} \rightarrow \mathbb{A}^{3}$ be the blow-up of \mathbb{A}^{3} at the origin and \tilde{X} the proper transform of X under π_{1}. Let

$$
\frac{x}{x_{1}}=\frac{y}{y_{1}}=\frac{t}{t_{1}}
$$

be the equation of $\tilde{\mathbb{A}}^{3}$ in $\mathbb{A}^{3}{ }_{(x, y, t)} \times \mathbb{P}^{2}{ }_{\left(x_{1}: y_{1}: t_{1}\right)}$. We may take as local coordinates on the open set U_{1} of $x_{1} \neq 0$ the functions $x, y_{1}=y / x$ and $t_{1}=t / x$; on V_{1} of $y_{1} \neq 0$ the functions $x_{1}=x / y, y$ and $t_{1}=t / y$; on the open set W_{1} of $t_{1} \neq 0$ the functions $x_{1}=x / t, y_{1}=y / t$ and t. We let $\pi_{1}=\left.\pi_{1}\right|_{\tilde{X}}: \tilde{X} \rightarrow X, f_{1}=p \circ \pi_{1}: \tilde{X} \rightarrow \Delta$.

Then the defining functions of the proper transform \tilde{X} of X and of the central fiber over $t=0$ on each open set are as follows respectively.

$$
\begin{aligned}
\tilde{X} \cap U_{1}: y_{1}^{3} x-x^{2} & +t_{1}\left(b_{10}+b_{01} y_{1}+b_{20} x+b_{11} x y_{1}+b_{02} x y_{1}^{2}+\left[x^{2}\right]\right) \\
& +t_{1}^{2}\left(c_{00}+c_{10} x+c_{01} x y_{1}+\left[x^{2}\right]\right)+t_{1}^{3} x(\cdots) \\
\tilde{X} \cap V_{1}: y-x_{1}^{4} y^{2} & +t_{1}\left(b_{10} x_{1}+b_{01}+b_{20} x_{1}^{2} y+b_{11} x_{1} y+b_{02} y+\left[y^{2}\right]\right) \\
& +t_{1}^{2}\left(c_{00}+c_{10} x_{1} y+c_{01} y+\left[y^{2}\right]\right)+t_{1}^{3} y(\cdots) \\
\tilde{X} \cap W_{1}: y_{1}^{3} t-x_{1}^{4} t^{2} & +\left(b_{10} x_{1}+b_{01} y_{1}+b_{20} x_{1}^{2} t+b_{11} x_{1} y_{1} t+b_{02} y_{1}^{2} t\right. \\
& \left.+\left[t^{2}\right]\right)+\left(c_{00}+c_{10} x_{1} t+c_{01} y_{1} t+\left[t^{2}\right]\right)+t(\cdots)
\end{aligned}
$$

and

$$
\begin{aligned}
U_{1} \cap f_{1}^{*}(0) & =(t)=\left(t_{1}\right)+(x) \\
& =\left(t_{1}, y_{1}^{3} x-x^{2}\right)+\left(x, b_{10} t_{1}+b_{01} y_{1} t_{1}+c_{00} t_{2}\right) \\
& =\left(t_{1}, y_{1}^{3}-x\right)+2\left(x, t_{1}\right)+\left(x, b_{10}+b_{01} y_{1}+c_{00} t_{1}\right) \\
& =C_{1}+2 E_{1}+F_{1} \\
V_{1} \cap f_{1}^{*}(0) & =(t)=\left(t_{1}\right)+(y) \\
& =\left(t_{1}, y-x_{1}^{4} y^{2}\right)+\left(y, b_{10} t_{1} x_{1}+b_{01} t_{1}+c_{00} t_{1}^{2}\right) \\
& =\left(t_{1}, 1-x_{1}^{4} y\right)+2\left(y, t_{1}\right)+\left(y, b_{10} x_{1}+b_{01}+c_{00} t_{1}\right) \\
& =C_{1}+2 E_{1}+F_{1} \\
W_{1} \cap f_{1}^{*}(0) & =(t)=\left(t, b_{10} x_{1}+b_{01} y_{1}+c_{00}\right)=F_{1}
\end{aligned}
$$

In the above, (g) means the zero locus of a function g. The following figure 1 is the central fiber of $f_{1}: \tilde{X} \rightarrow \Delta$.

$b_{10} \neq 0$

$b_{10}=0, b_{01} \neq 0$
figure 1

If $b_{10} \neq 0$, then \tilde{X} is smooth and the usual stable reduction process, that is in this case two consecutive blow ups which makes the fiber over $t=0$ one with normal crossings, the base change of the total order 18 , the desingularizations of the total surface and contractions of rational components of self intersection number (-1) and (-2) (see figure 2), gives a smooth curve (more precisely trigonal curve totally ramified at 5 points). If one want to know the details of the proof, one can do it as we have done in [2] or [3].

figure 2

If $b_{10}=0$, then \tilde{X} has only one singular point P_{1} which is a double point on $\tilde{X} \cap U_{1}$. We now desingularize \tilde{X}. For the sake of equations, we in fact work on $N_{1}=\tilde{X} \cap U_{1} \subset \mathbb{A}^{3}{ }_{\left(x, y_{1}, t_{1}\right)}$ without making any distinction from \tilde{X}. Take a blow up $\pi_{2}: \tilde{\mathbb{A}}^{3} \rightarrow \mathbb{A}^{3}$ and write $\tilde{X}^{(2)}=$ \tilde{N}_{1} the proper transform of N_{1} under π_{2} and $\pi_{2}=\left.\pi_{2}\right|_{\tilde{X}^{(2)}}: \tilde{X}^{(2)} \rightarrow \tilde{X}$. To describe $\tilde{X}^{(2)}$, let

$$
\tilde{\mathbb{A}}^{3}=\left\{\frac{x}{x_{2}}=\frac{y_{1}}{y_{2}}=\frac{t_{1}}{t_{2}}\right\} \subset \mathbb{A}_{\left(x, y_{1}, t_{1}\right)}^{3} \times \mathbb{P}_{\left(x_{2}: y_{2}: t_{2}\right)}
$$

and take as local coordinates on the open set U_{2} of $x_{2} \neq 0$ the functions $x, y_{2}=y_{1} / x$ and $t_{2}=t_{1} / x$; on V_{2} of $y_{2} \neq 0 x_{2}=x / y_{1}, y_{1}$ and $t_{2}=t_{1} / y_{1}$; on W_{2} of $t_{2} \neq 0 x_{2}=x / t_{1}, y_{2}=y_{1} / t_{1}$ and t_{1}. We let $f_{2}=f_{1} \circ \pi_{2}: \tilde{X}^{(2)} \rightarrow \Delta$.

On each neighborhood U_{2}, V_{2} and W_{2} the defining function of the proper transform $\tilde{X}^{(2)}$ of \tilde{X} is the following.

$$
\begin{aligned}
\tilde{X}^{(2)} \cap U_{2}: & y_{2}^{3} x^{2}-1+t_{2}\left(b_{01} y_{2}+b_{20}+b_{11} x y_{2}+b_{02} x^{2} y_{2}^{2}+[x]\right) \\
& +t_{2}^{2}\left(c_{00}+c_{10} x+c_{01} x^{2} y_{2}+\left[x^{2}\right]\right)+t_{2}^{3} x^{2}(\cdots) ; \\
\tilde{X}^{(2)} \cap V_{2}: & x_{2} y_{1}^{2}-x_{2}^{2}+t_{2}\left(b_{01}+b_{20} x_{2}+b_{11} x_{2} y_{1}+b_{02} x_{2} y_{1}^{2}+\left[x_{2}^{2} y_{1}\right]\right) \\
& +t_{2}^{2}\left(c_{00}+c_{10} x_{2} y_{1}+c_{01} x_{2} y_{1}^{2}+\left[x_{2}^{2} y_{1}^{2}\right]\right)+t_{2}^{3} x_{2} y_{1}^{2}(\cdots) ; \\
\tilde{X}^{(2)} \cap W_{2}: & x_{2} y_{2}^{3} t_{1}{ }^{2}-x_{2}^{2}+\left(b_{01} y_{2}+b_{20} x_{2}+b_{11} x_{2} y_{2} t_{1}+b_{02} x_{2} y_{2}^{2} t_{1}^{2}\right. \\
& \left.+\left[x_{2}^{2} t_{1}\right]\right)+\left(c_{00}+c_{10} x_{2} t_{1}+c_{01} x_{2} y_{2} t_{1}^{2}+\left[x_{2}^{2} t_{1}^{2}\right]\right)+t_{1}^{2} x_{2}(\cdots) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
U_{2} \cap f_{2}^{*}(0) & =\left(t_{1}\right)+(x)=\left(t_{2}\right)+2(x) \\
& =\left(t_{2}, y_{2}^{3} x^{2}-1\right)+2\left(x,-1+b_{01} y_{2} t_{2}+b_{20} t_{2}+c_{00} t_{2}^{2}\right) \\
V_{2} \cap f_{2}^{*}(0) & =\left(t_{1}\right)+(x)=\left(t_{2}\right)+2\left(y_{1}\right)+\left(x_{2}\right) \\
& =\left(t_{2}, x_{2} y_{1}^{2}-x_{2}^{2}\right)+2\left(y_{1},-x_{2}^{2}+b_{01} t_{2}+b_{20} x_{2} t_{2}+c_{00} t_{2}^{2}\right) \\
& +\left(x_{2}, b_{01} t_{2}+c_{00} t_{2}^{2}\right) \\
& =\left(t_{2}, y_{1}^{2}-x_{2}\right)+2\left(x_{2}, t_{2}\right)+\left(x_{2}, b_{01}+c_{00} t_{2}\right) \\
& +2\left(y_{1},-x_{2}^{2}+b_{01} t_{2}+b_{20} x_{2} t_{2}+c_{00} t_{1}^{2}\right) ;
\end{aligned}
$$

$W_{3} \cap f_{2}^{*}(0)=\left(t_{1}\right)+(x)=2\left(t_{1}\right)+\left(x_{2}\right)$

$$
=\left(x_{2}, b_{01} y_{2}+c_{00}\right)+2\left(t_{1},-x_{2}^{2}+b_{01} y_{2}+b_{20} x_{2}+c_{00}\right)
$$

If $b_{10}=0$ and $b_{01} \neq 0$, then $\tilde{X}^{(2)}$ is smooth and the figure $3(\mathrm{a})$ is the new fiber over $t=0$.
(a)

(b)

figure 3

By the consecutive blow ups of the total surface $\tilde{X}^{(2)}$ at P_{2}, the base changes of the total order 40, the singularizations(figure 4) and the contractions of some rational components, we get a smooth curve of genus three which is 4 -gonal over \mathbb{P}^{1} totally ramified at four points.

figure 4

If $b_{10}=b_{01}=0$, and $c_{00} \neq 0$, then $\tilde{X}^{(2)}$ has a double point P_{2} in the open set $N_{2}=V_{2} \cap \tilde{X}^{(2)} \subset V_{2} \cong \mathbb{A}_{\left(x_{2}, y_{1}, t_{2}\right)}^{3}$ (Figure 3(b)). Therefore we need more blow-ups. As before, we define $\tilde{V}_{2}, \tilde{N}_{2}=\tilde{X}^{(3)}$ and $\pi_{3}: \tilde{X}^{(3)} \rightarrow \tilde{X}^{(2)}$. Since

$$
\tilde{V}_{2}=\left\{\frac{x_{2}}{x_{3}}=\frac{y_{1}}{y_{3}}=\frac{t_{2}}{t_{3}}\right\} \subset \mathbb{A}_{\left(x_{2}, y_{1}, t_{2}\right)}^{3} \times \mathbb{P}_{\left(x_{3}: y_{3}: t_{3}\right)}^{2}
$$

we take as local coordinates on the open set $U_{3}=\left\{x_{3} \neq 0\right\}$ the functions $x_{2}, y_{3}=y_{2} / x_{3}$ and $t_{3}=t_{2} / x_{3}$; on $V_{3}=\left\{y_{3} \neq 0\right\}$ the functions $x_{3}=x_{2} / y_{1}, y_{1}$ and $t_{3}=t_{2} / y_{1} ;$ on $W_{3}=\left\{t_{3} \neq 0\right\}$ the functions $x_{3}=x_{2} / t_{2}, y_{3}=y_{1} / t_{2}$ and t_{2}.

On each open neighborhood $U_{3}, V_{3}, W_{3}, \tilde{X}^{(3)}$ is given by the following equations respectively:

$$
\begin{aligned}
x_{2} y_{3}^{2}-1 & +t_{3}\left(b_{20}+b_{11} x_{2} y_{3}+b_{02} x_{2}^{2} y_{3}^{2}+\left[x_{2}^{2} y_{3}\right]\right) \\
& +t_{3}^{2}\left(c_{00}+c_{10} x_{2}^{2} y_{3}+c_{01} x_{2}^{3} y_{3}+\left[x_{2}^{2} y_{3}^{2}\right]\right)+x_{2}^{4} y_{3}^{2} t_{3}^{3}(\cdots) \\
x_{3} y_{1}-x_{3}^{2} & +t_{3}\left(b_{20} x_{3}+b_{11} x_{3} y_{1}+b_{02} x_{3} y_{1}^{2}+\left[x_{3}^{2} y_{1}^{2}\right]\right) \\
& +t_{3}^{2}\left(c_{00}+c_{10} x_{3} y_{1}^{2}+c_{01} x_{3} y_{1}^{3}+\left[x_{3}^{2} y_{1}^{4}\right]\right)+x_{3} y_{1}^{4} t_{3}^{3}(\cdots) \\
x_{3} y_{3}^{2} t_{2}-x_{3}^{2} & +\left(b_{20} x_{3}+b_{11} x_{3} y_{3} t_{2}+b_{02} x_{3} y_{3}^{2} t_{2}^{2}+\left[x_{3}^{2} y_{3}^{2} t_{2}^{2}\right]\right) \\
& +\left(c_{00}+c_{10} x_{3} y_{3} t_{2}^{2}+c_{01} x_{3} y_{3}^{2} t_{2}^{3}+\left[x_{3}^{2} y_{3}^{2} t_{2}^{4}\right]\right)+x_{3} y_{3}^{2} t_{2}^{4}(\cdots)
\end{aligned}
$$

But $\tilde{X}^{(3)}$ is not smooth either. Its singular point lies in $\tilde{X}^{(3)} \cap V_{3}$. As we have done, we define $N_{3}, \pi_{4}, U_{4}, V_{4}, W_{4}, \tilde{X}^{(4)}$ and f_{4} in the same way. Then $\tilde{X}^{(4)}$ is locally given by as follows on U_{4}, V_{4} and W_{4} respectively.

$$
\begin{aligned}
y_{4}-1 & +t_{4}\left(b_{20}+b_{11} x_{3} y_{4}+b_{02} x_{3}^{2} y_{4}^{2}+\left[x_{3} y_{4}^{2}\right]\right) \\
& +t_{4}^{2}\left(c_{00}+c_{10} x_{3}^{4} y_{4}^{2}+c_{01} x_{3}^{4} y_{4}^{3}+\left[x_{3}^{6} y_{4}^{4}\right]\right)+x_{3}^{6} y_{4}^{4} t_{4}^{3}(\cdots) ; \\
x_{4}-x_{4}^{2} & +t_{4}\left(b_{20} x_{4}+b_{11} x_{4} y_{1}+b_{02} x_{4} y_{1}^{2}+\left[x_{4} y_{1}^{3}\right]\right) \\
& +t_{4}^{2}\left(c_{00}+c_{10} x_{4} y_{1}^{3}+c_{01} x_{4} y_{1}^{4}+\left[x_{4}^{2} y_{1}^{6}\right]\right)+x_{4} y_{1}^{6} 3_{4}^{3}(\cdots) ; \\
x_{4} y_{4}-x_{4}^{2} & +\left(b_{20} x_{4}+b_{11} x_{4} y_{4} t_{3}+b_{02} x_{4} y_{4}^{2} t_{3}^{2}+\left[x_{4} y_{4}^{2} t_{3}^{2}\right]\right) \\
& +\left(c_{00}+c_{10} x_{4} y_{4}^{2} 3_{3}^{3}+c_{01} x_{4} y_{4}^{3} t_{3}^{4}+\left[x_{4}^{2} y_{4}^{4} t_{3}^{6}\right]\right)+x_{4} y_{4}^{4} t_{3}^{6}(\cdots) .
\end{aligned}
$$

Now $\tilde{X}^{(4)}$ being smooth, we compute the central fiber $f_{4}^{*}(0)$.

$$
\begin{aligned}
f_{4}^{*}(0) \cap U_{4}= & \left(t_{2}\right)+2\left(y_{1}\right)+\left(x_{2}\right) \\
= & \left(t_{3}\right)+4\left(y_{1}\right)+\left(x_{3}\right)=\left(t_{4}\right)+4\left(y_{4}\right)+6\left(x_{3}\right) \\
= & \left(t_{4}, y_{4}-1\right)+4\left(y_{4},-1+b_{20} t_{4}+c_{00} t_{4}^{2}\right) \\
& +6\left(x_{3}, y_{4}-1+b_{20} t_{4}+c_{00} t_{4}^{2}\right) ; \\
f_{4}^{*}(0) \cap V_{4}= & \left(t_{3}\right)+4\left(y_{1}\right)+\left(x_{3}\right)=\left(t_{4}\right)+6\left(y_{1}\right)+\left(x_{4}\right) \\
= & \left(t_{4}, x_{4}-x_{4}^{2}\right)+6\left(y_{1}, x_{4}-x_{4}^{2}+b_{20} x_{4} t_{4}+c_{00} t_{4}^{2}\right) \\
& +\left(x_{4}, c_{00} t_{4}^{2}\right) \\
= & 3\left(t_{4}, x_{4}\right)+\left(t_{4}, 1-x_{4}\right) \\
& +6\left(y_{1}, x_{4}-x_{4}^{2}+b_{20} x_{4} t_{4}+c_{00} t_{4}^{2}\right) ; \\
f_{4}^{*}(0) \cap W_{4}= & 6\left(t_{3}\right)+4\left(y_{4}\right)+\left(x_{4}\right) \\
= & 6\left(t_{3}, x_{4} y_{4}-x_{4}^{2}+b_{20} x_{4}+c_{00}\right) \\
& +4\left(y_{4},-x_{4}^{2}+b_{20} x_{4}+c_{00}\right) .
\end{aligned}
$$

Therefore it consists of the 6 -tuple exceptional curve, two quadruple lines (possibly not distinct), a triple one and the forth proper transform of the original central curve C which is a smooth rational curve
(figure 5). In figure 5 parallelogram represents $\mathbb{P}_{\left(x_{4}: y_{4}: t_{4}\right)}^{2}$. Now the total base change of order 12 followed by desingularizations and contractions will give us a smooth curve of genus three that is a totally ramified trigonal curve.

figure 5

The remaining case is that X can have a triple point. Therefore we have proved the following.

Tieorem. Let C be a plane quartic with an ordinary cusp of multiplicity three and $p: X \rightarrow \Delta$ a right family of plane quartics degenerating to C. Then the stable model of C obtained from X is a smooth curve except that the total surface X has triple point along $t=0$.

References

1. Bardelli, F., Lectures on Riemann Surfaces, World Scientific, 1989, pp. 648-704.
2. Kang, P. L., Stable reductions of singular plane quartics, Comm. Korean Math. Soc. 9 (1994), 905-915.
3. \qquad , Stable Reductions of general families of plane quartics degenerating to singular plane quartics, preprint.
4. D. Mumford, Semi-stable reduction, LNM 339, pp. 53-108.
5. M. Namba, Geometry of Projective Algebraic Curves, Marcel Dekker, Inc., 1984.

Department of Mathematics
Chungnam National University
Taejon 305-764, Korea

[^0]: The author is supported in part by BSRI-95-1427, Ministry of Education Received by the editors on June 30, 1996.
 1991 Mathematics subject classifications: Primary 14H10.

