JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 9, July 1996

SELF-INVOLUTIVE SEMIGROUP

SANG DEOK LEE AND YOUNG SEO PARK

ABSTRACT. This paper is to study the regular * semigroup, to define the self-involutive semi-group, to introduce the properties of the selfinvolutive semigroup, and to generalize the maximum idempotentseparating congruence which was found by conditioning self-involutive semigroups.

1. Introduction

A * semigroup is a set S equipped with a binary operation \cdot and unitary operation $*: S \to S$ satisfying the following three axioms :

(1) (xy)z = x(yz),

$$(2) \ (x^*)^* = x,$$

(3) $(xy)^* = y^*x^*$ for all $x, y, z \in S$.

Such a unitary operation * is sometimes called an involution, and $(S, \cdot, *)$ is sometimes called an involution semigroup. A semigroup (S, \cdot) is *regular* if for each a in S, there exists x in S such that a = axa. When a = xax, then a and y = xax are *inverses* in the sense that aya = a and yay = y. A projection is an impotent e such that $e^* = e$. A * semigroup $(S, \cdot, *)$ is a regular * semigroup if satisfies axiom (4):

(4) $x = xx^*x$ for all $x \in S$.

Notice that in a regular * semigroup, then x^* is an inverse x since $x^*xx^* = (xx^*x)^* = x^*$ [2].

Received by the editors on June 27, 1996.

¹⁹⁹¹ Mathematics subject classifications: Primary 20M17.

EXAMPLE 1.1. Let X be a set and $Y = X \times X$ be the rectangular band on X, i.e., (x,y)(r,s) = (x,s) for every $x, y, r, s \in X$. Define * by $(x,y)^* = (y,x)$. It is easy to check that $(Y, \cdot, *)$ is a regular * semigroup.

Nordahl and Scheiblich [2] proved the following result for regular * semigroups. Since their proof does not use the regularity axiom, it is valid for * semigroups.

THEOREM 1.2. Let $a \in S$. The map $\sigma : x \to x^*(x \in Ra)$ is a 1 : 1 map of Ra onto La^* . The map σ preserves idempotents and H-classes.

PROOF. If $x \in Ra$, then xt = a and au = x for some $t, u \in S$. Thus, $t^*x^* = a^*$ and $u^*a^* = x^*$ from which $x^* \in La^*$. Similarly, if $(x, y) \in H = R \cap L$, then $(x^*, y^*) \in L \cap R = H$ and so preserves Hclasses. If $e \in E$, then e = ee and so $e^* = e^*e^*$, i.e., $e^* \in E$. Finally, $\tau : y \to y^*(y \in La^*)$ is an obvious inverse for and so both and are bijective.

THEOREM 1.3. The involution * fixes one and only one idempotent per R-class.

PROOF. For $a \in S$, then aa^* is an idempotent element of Ra. Furthermore, $(aa^*)^* = (a^*)^*a^* = aa^*$ and so * fixes at least one idempotent per R-class. Suppose now that $e^2 = e, f^2 = f, (e, f) \in R$, and $e^* = e$. By Theorem 1.2, $(e^*, f^*) \in L$. Since $e = e^*$, then $(e, f^*) \in L$. If $f = f^*$, then $(e, f) \in L \cap R = H$ so e = f.

Consider the rectangular band on $X, Y = X \times X$, with \cdot and * defined by (x, y)(r, s) = (x, s) and $(x, y)^* = (y, x)$ for every $x, y, r, s \in X$. Clearly Y is a regular * semigroup and projections are elements of the form (x, x). Note that a multiplication of projections does not

always produce a projection : (x, x)(y, y) = (x, y) and (y, y)(x, x) = (y, x). This observation leads to the following two propositions.

PROPOSITION 1.4. Let S be a * semigroup, and let $e, f \in P$. Then the following statements are equivalent:

- (1) $ef \in P$.
- (2) ef = fe.
- (3) fef = ef or efe = ef.

PROPOSITION 1.5.

- (1) Let e, f be projections. Then $ef, fe \in E$.
- (2) For all e, f in P, if aa* = a*a for all a in S, then ef ∈ P (
 i.e. ef = fe).
- (3) (3) Let S be a regular * semigroup in which every element a commutes its involution a*. Then S is an orthodox.
- (4) If S is a* semigroup and e, f are in P, then efe, fef are in P.

PROOF. (1) $ef = (ef)(ef)^*(ef) = e(ff)(ee)f = (ef)(ef)$. Thus, $ef \in E$ and dually, $fe \in E$.

(2) Let $e, f \in P$. Then $ef = (ef)(ef)^*(ef) = (ef)(ef)(ef)^* = efeffe = efefe$ and efe = efefee = efefe, so efe = ef. Thus $(ef)^2 = efef = eff = ef$. And $(ef)^* = (efe)^* = efe = ef$. Hence ef in P.

(3) Let $e, f \in E$. Since $P^2 \subset E$, $ef = (ee^*)(e^*e)(ff^*)(f^*f) = ee^*ff^* \in E$.

(4) $(efe)^2 = efeefe = efe$ and $(efe)^* = efe$. Thus, $efe \in P$. Similarly $fef \in P$.

PROPOSITION 1.6. $E = P^2$.

PROOF. For every $x \in S$, $x^*x, xx^* \in P$. Thus, let $e \in E$, then $e = ee^*e = (ee^*)(e^*e) \in P^2$, and since $P^2 \subset E$ hence $E = P^2$.

PROPOSITION 1.7. Let S be a regular * semigroup such that $e = xex^* = x^*ex$ for every e in P and for every x in S. Then the projections are central.

PROOF. For every x in S, xx^* and x^*x are in P. Now $ex = exx^*x = exx^*exx^*x = exx^*ex = exe$ and $xe = xx^*xe = xx^*xex^*xe = xex^*xe = xex^*xe = exe$. Hence ex = xe.

2. Self-Involutiveness

We now introduce a concept called self-involutiveness and show that the existence of the maximum idempotent-separating congruence for certain type of abelian semigroups.

DEFINITION 2.1. An element x in * semigroup to be *self-involutive* if and only if $x^* = x$. Of course, we define a * semigroup in which all elements are self-involutive will be called a *self-involutive* semigroup

EXAMPLE 2.2. Let S be the set of all $n \times n$ real diagonal matrices. Let * be the transposition. Clearly $(S, \cdot, *)$ is a self-involutive semigroup.

PROPOSITION 2.3. Let S be a finite * semigroup with odd number of elements. Then there exists at least one self-involutive element in S

THEOREM 2.4. Let S be a * semigroup with 1. Then S has a maximal self-involutive subsemigroup.

PROOF. Let $F = \{a \in S : a^* = a\}$, and let $\mathcal{C} = \{X \subset F : XX \subset X\}$. Use the set inclusion \subset as a partial ordering on \mathcal{C} . Let F be nonempty. Choose $a \in F$. Define $(a) = \{a^n : n \in N\}$. Then clearly $(a) \in \mathcal{C}$ so \mathcal{C} is nonempty. Let \mathcal{D} be a chain in \mathcal{C} . Now $\cup \mathcal{D}$ is an upper bound for \mathcal{D} whence there exists a maximal element F_0 in \mathcal{C} .

REMARK. We define such F_0 to be a *F*-maximal set. Moreover, F_0 is abelian. Let S be a * semigroup with 1, and let E_0 be a largest $X \subset E$ such that $XX \subset X$. We call such E_0 an *E*-maximal set. Let S be a semigroup, we shall say that an equivalence relation on S is *idempotent-separating* if $\rho \cap (E \times E) = 1_E$, i.e., such that if e, f are idempotents $(e, f) \in \rho$ then e = f.

LEMMA 2.5. Let $\mu[\mu']$ be the maximum idempotent- separating [*] congruence on a regular * semigroup S. Then we have

$$\mu = \mu' = \{(a, b) \in S \times S : a^*ea = b^*eb \text{ and } aea^* = beb^*$$
for all $e \in P\}[2].$

THEOREM 2.6. Let S be an abelian semigroup such that $SE \subset E$. Then the maximum idempotent-separating congruence is given by

$$\rho = \{(a, b) \in S \times S : ae = be, \text{ for all } e \in E\}.$$

PROOF. Clearly ρ is an equivalence relation. Let $c \in S$ and $e \in E$. Now $ce \in E$. Let $(a, b) \in \rho$. Then ace = bce and so $(ac, bc) \in \rho$. Hence ρ is right compatible. Similarly ρ is left compatible. Hence ρ is a congruence. If $(e, f) \in \rho \cap (E \times E)$, then e = ee = fe and f = ff = ef = fe. So e = f. Hence ρ is an idempotent-separating congruence. Finally, let σ be any idempotent-separating congruence, and let $(a, b) \in \sigma$. Since σ is a congruence $(ae, be) \in \sigma$. And since aeand be are idempotents, we have ae = be. So $(a, b) \in \rho$. Hence $\sigma \subset \rho$. Thus is the maximum idempotent-separating congruence.

EXAMPLE 2.7. Consider the semigroup $S = \{0, f, a\}$, where

$$0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad f = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

and where the operation is matrix multiplication. The Cayley table of S is

	0	f	a
0	0	0	0
f	0	f	0
a	0	0	0

and it is evident that S is an abelian semigroup such that $SE \subset E$. Then the maximum idempotent-separating congruence is

 $\rho = \{(0,0), (f,f), (0,a), (a,0), (a,a)\}.$

COROLLARY. Let S be an self-involutive semigroup such that $SE \subset E$. Then the maximum idempotent-separating congruence is given as in Theorem 2.6.

COROLLARY. Let μ be the maximum idempotent-separating * congruence on a regular self-involutive semigroup S. Then we have

 $\mu = \{(a, b) \in S \times S : aea = beb, \text{ for all } e \in E\}.$

References

- 1. Howie, J. M., An Introduction to Semigroup Theory, Academic Press, London, 1976.
- 2. Nordahl, T. E. and Scheiblich, H. E., Regular * semigroups, Semigroup Forum 16 (1978), 369-377.

DEPARTMENT OF MATHEMATICS DANKOOK UNIVERSITY CHEONAN 330-714, KOREA