ON ISOMORPHISM THEOREMS

 IN $B C I$-SEMIGROUPS

 IN $B C I$-SEMIGROUPS}

Sun Shin Alin* and Hee Sik Kim**

Abstract

In this paper, we consider the quotient algebra of $B C I$ semigroups, and obtain some isomorphism theorems of $B C I$-semigroups.

1. Introduction

In 1966, K. Iséki ([4]) introduced the notion of $B C I$-algebra which is a generalization of a $B C K$-algebra. A lot of works has been done on $B C K$-algebras and $B C I$-algebras. The ideal theory plays an important role in studying $B C K$-algebras and $B C I$-algebras, and some interesting results have been obtained ($[2,3,5,6,10]$). For $B C K$-algebras, every ideal is a subalgebra. Unfortunately, the ideal of $B C I$-algebra need not be a subalgebra. In 1993, Y.B. Jun et. al. ([7]) introduced the notion of $B C I$-semigroups/monoid, and studied their properties. They also considered the concept of \mathcal{I}-ideals in $B C I$-semigroups. The present authors ([1]) studied \mathcal{I}-ideals in $B C I$-semigroups, and some authors $([8,9])$ studied $B C I$-semigroups related to the fuzzy theory. Since every p-semisimple $B C I$-algebra leads to an abelian group by defining $x+y:=x *(0 * y)$, p-semisimple $B C I$-semigroup gives a ring structure. On the while, every ring gives $B C I$-algebra by defining $x * y:=x-y$ and hence leads to a $B C I$-semigroup. This means that the $B C I$-semigroup is a generalization of the ring structure. In

[^0]this paper, we consider the quotient algebras and obtain some isomorphism theorems of $B C I$-semigroups.

Recall that a $B C I$-algebra is a non-empty set X with a binary operation "*" and a constant 0 satisfying the axioms:
$B C I-1((x * y) *(x * z)) *(z * y)=0$,
$B C I-2(x *(x * y)) * y=0$,
$B C I-3 x * x=0$,
$B C I-4 x * y=0$ and $y * x=0$ imply that $x=y$,
$B C I-5 x * 0=0$ implies that $x=0$,
for all $x, y, z \in X$. In a $B C I$-algebra X, we define a partial ordering \leq by $x \leq y$ if and only if $x * y=0$. A non-empty subset A of a $B C I$-algebra X is said to be an ideal of X if (i) $0 \in A$, (ii) $x * y \in A$ and $y \in A$ imply that $x \in A$.

Definition 1.1 ([7]). A $B C I$-semigroup is a non-empty set X with two binary operations "*" and "." and constant 0 satisfying the axioms:
(1) $(X ; *, 0)$ is a $B C I$-algebra,
(2) (X, \cdot) is a semigroup,
(3) the operation "." is distributive (on both sides) over the operation "*", that is, $x \cdot(y * z)=(x \cdot y) *(x \cdot z)$ and $(x * y) \cdot z=(x \cdot z) *(y \cdot z)$ for all $x, y, z \in X$.

We give some examples of the $B C I$-semigroup which is a generalization of the ring. We usually for convenience denote $x y$ instead of $x \cdot y$ in a $B C I$-semigroup X.

Example 1.2. Define two binary operations "*" and "." on a set $X:=\{0,1,2,3\}$ as follows:

$*$	0	1	2	3
0	0	0	3	2
1	1	0	3	2
2	2	2	0	3
3	3	3	2	0

.	0	1	2	3
0	0	0	0	0
1	0	1	0	1
2	0	0	2	2
3	0	0	2	3

Then, by routine calculations, we can see that X is a $B C I$-semigroup.
Example 1.3. Let $X:=\{0,1,2,3,4\}$ be a set in which the operations "*" and "." are defined by

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	1	0
2	2	2	0	0	0
3	3	3	3	0	0
4	4	4	4	4	0

.	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	0	0	0	2
3	0	0	0	2	3
4	0	1	2	3	4

Then $(X ; *, \cdot, 0)$ is a $B C I$-semigroup.
Proposition 1.4 ([7]). Let X be a $B C I$-semigroup. Then
(i) $0 x=x 0=0$,
(ii) $x \leq y$ implies that $x z \leq y z$ and $z x \leq z y$, for all $x, y, z \in X$.

Definition 1.5 ([7]). A non-empty subset A of a $B C I$-semigroup X is called a left(right) I-ideal of X if
(i) A is an ideal of a $B C I$-algebra X,
(ii) $a \in X$ and $x \in A$ imply that $a x \in A(x a \in A)$.

Both left and right \mathcal{I}-ideal is called a two-sided \mathcal{I}-ideal or simply \mathcal{I}-ideal. Let I be an \mathcal{I}-ideal of a $B C I$-algebra $(X ; *, 0)$. For any x, y in X, we define $x \sim y$ by $x * y \in I$ and $y * x \in I$. Then \sim is a congruence relation on X. Denote $X / I:=\left\{C_{x} \mid x \in X\right\}$ and define that $C_{x} * C_{y}=C_{x * y}$. Since \sim is a congruence relation on X, the operation "*" is well-defined.

Theorem 1.6 ([10]). Let $(X ; *, 0)$ be a $B C I$-algebra and let I be an ideal of X. Then $\left(X / I ; *, C_{0}\right)$ is also a $B C I$-algebra, which is called the quotient algebra via I, and $C_{0}=I$.

Definition 1.7. Let X and Y be $B C I$-semigroups. A map f is called a BCI-semigroup homomorphism if $f(x * y)=f(x) * f(y)$ and $f(x \cdot y)=f(x) \cdot f(y)$ for any $x, y \in X$.

2. Main Results

It is well known that in $B C K$-algebras every ideal is a subalgebra. But in $B C I$-algebras this fails to hold (see [10, p.498]). Hence in BCIsemigroups this also fails to hold. We say an ideal A of a $B C I$-algebra X regular in case A is also a subalgebra. Obviously, in $B C K$-algebras each ideal is regular.

For our purpose, we say an \mathcal{I}-ideal A of a $B C I$-semigroup X regular in case A is also a subalgebra of X.

Definition 2.1. Let $(X ; *, \cdot, 0)$ be a $B C I$-semigroup and let X_{0} be any non-empty subset of $X .\left(X_{0} ; *, \cdot, 0\right)$ is called a subalgebra of X if for any $x, y \in X_{0}, x * y \in X_{0}$ and $x \cdot y \in X_{0}$.

We can easily prove the following theorem and omit the proof.
Theorem 2.2. Let X and Y be $B C I$-semigroups, and let $f: X \rightarrow$ Y be a $B C I$-semigroup homomorphism. Then Kerf is a regular \mathcal{I} ideal of X.

We clefine quotient algebra and obtain some isomorphisms of $B C I$ semigroups. Let I be an \mathcal{I}-ideal of a $B C I$-semigroup X. Then $\left(X / I ; *, C_{0}\right)$ is a $B C I$-algebra by Theorem 1.6. Define $C_{x} \cdot C_{y}=C_{x \cdot y}$ on X / I. Then the operation ". " is well-defined. If $C_{x}=C_{y}$ and $C_{s}=C_{t}$, then $x * y, y * x \in I$ and $s * t, t * x \in I$. Since I is an \mathcal{I}-ideal of a $B C I$-semigroup $X, y(t * s)=y t * y s \in I$ for any $y \in X$, and $(y * x) s=y s * x s \in I$ for any $s \in X$. Then,
$(y t * x s) *(y s * x s) \leq y t * y s \in I$ and so $(y t * x s) *(y s * x s) \in I$. Since $y s * x s \in I$ and I is an \mathcal{I}-ideal of $X, y t * x s \in I$. Similarly, $x s * y t \in I$. Since $x s * y t \in I$ and $x s * y t \in I, C_{x s}=C_{y t}$. Therefore $C_{x} \cdot C_{s}=C_{y} \cdot C_{t}$. Hence"." is well-defined.

We claim that $(X / I, \cdot)$ is a semigroup. Since $C_{x} \cdot\left(C_{y} \cdot C_{z}\right)=$ $C_{x} \cdot\left(C_{y} \cdot C_{z}\right)=C_{x(y z)}=C_{(x y) z}=\left(C_{x y}\right) \cdot C_{z}=\left(C_{x} \cdot C_{y}\right) \cdot C_{z}$ for any $C_{x}, C_{y}, C_{z} \in X / I,(X / I, \cdot)$ is a semigroup.

Finally, we show that "." is distributive (on both sides) over the operation "*". For any $C_{x}, C_{y}, C_{z} \in X / I, C_{x} \cdot\left(C_{y} * C_{z}\right)=C_{x} \cdot\left(C_{y * z}\right)=$ $C_{x(y * z)}=C_{x y * x z}=C_{x y} * C_{x z}=\left(C_{x} \cdot C_{y}\right) *\left(C_{x} \cdot C_{z}\right)$. By a similar way, we obtain $\left(C_{x} * C_{y}\right) \cdot C_{z}=\left(C_{x} \cdot C_{z}\right) *\left(C_{y} \cdot C_{z}\right)$. Hence $\left(X / I ; *, \cdot, C_{0}\right)$ satisfies distributive laws. Thus X / I is a $B C I$-semigroup. Summarizing the above facts we have the following theorem:

Theorem 2.3. Let $(X ; *, \cdot, 0)$ be a $B C I$-semigroup and let I be an \mathcal{I}-ideal of X. Then $\left(X / I ; *, \cdot, C_{0}\right)$ is also a $B C I$-semigroup which is called the quotient algebras via I, and $C_{0}=I$.

Furthermore, if 1_{X} is the multiplicative identity of a $B C I$-semigroup X, then $C_{1_{X}}$ is the multiplicative identity of X / I; and if X is commutative, then X / I is also commutative. If $I=X$, then X / I is the zero $B C I$-semigroup. If $I=(0)$, then X / I is the same as the $B C I$-semigroup X by identifying $C_{a}, a \in X$, with a.

Theorem 2.4. Let X and Y be $B C I$-semigroups, and let $f: X \rightarrow$ Y be a $B C I$-semigroup epimorphism. Then $Y \cong X / K e r f$.

Proof. By Theorem 2.2, Kerf is a regular \mathcal{I}-ideal of X. So the quotient algebra X / Kerf can be obtained in the standard way. Now we define $h: Y \rightarrow X / K \operatorname{erf}$ by $h\left(f(x)=(\text { Kerf })_{x}\right.$. We will prove that h is an isomorphism from Y onto X / Kerf. First, we claim that h is well-defined. If $f(x)=f(y)$, then $0=f(x) * f(y)=f(y) * f(x)$
and so $f(x * y)=f(y * x)=0$. It follows that $x * y, y * x \in \operatorname{Kerf}$ and hence $(\operatorname{Kerf})_{x}=(\operatorname{Kerf})_{y}$. On the other hand, for each $y \in Y$, since f is an epimorphism, there exists an element x in X such that $f(x)=y$. So $h(y)=h(f(x))=(\text { Kerf })_{x}$. Since $h(f(x) * f(y))=$ $h(f(x * y))=(\text { Kerf })_{x * y}=(\text { Kerf })_{x} *(\text { Kerf })_{y}=h(f(x)) * h(f(y))$ and $h(f(x) f(y))=h(f(x y))=(K \operatorname{Kef})_{x y}=(\operatorname{Kerf})_{x} \cdot(\operatorname{Kerf})_{y}=$ $h(f(x)) \cdot h(f(y)), h$ is a $B C I$-semigroup homomorphism.

Suppose that $h(y)=(\operatorname{Ker} f)_{0}$ for some y in Y. Then there exists $x \in X$ such that $f(x)=y$. So $(\text { Ker } f)_{0}=h(f(x))=(\text { Kerf })_{x}$. This means $x=x * 0 \in \operatorname{Kerf}$ and $y=f(x)=0$, therefore h is one-one.

For each $(\operatorname{Ker} f)_{x} \in X / K e r f$, we have $h(f(x))=(\text { Ker } f)_{x}$. Hence h is onto. This completes the proof.

Corollary 2.5. Let I be an \mathcal{I}-ideal of a $B C I$-semigroup X, and let $\eta: X \rightarrow X / I$ be the natural $B C I$-semigroup homomorphism. Then $X / I \cong X /$ Ker η.

The proof can be immediately obtained from Theorem 2.4. In the above Corollary 2.5, $\operatorname{Ker} \eta=I_{0}$, where I_{0} is the class containing 0 in the quotient algebra X / I. In general, $I \supseteq K e r \eta=I_{0}$.

Theorem 2.6. Given a $B C I$-semigroup homomorphism $f: X \rightarrow$ Y, there exists a unique injective $B C I$-semigroup homomorphism g : $X / K e r f \rightarrow Y$ such that the diagram

commutes, that is, $f=g \eta$, where η is the canonical (or natural)
$B C I$-semigroup homomorphism.
Proof. Clearly, the map g defined by $g\left((\operatorname{Kerf})_{x}\right)=f(x)$ is injective. Also, $f=g \eta$, as proved in Theorem 2.4. To show that g is unique, let $f=h \eta$, where $h: X / \operatorname{Ker} f \rightarrow Y$ is a $B C I$-semigroup homomorphism. Then $g \eta(x)=h \eta(x)$ for all $x \in X$. So $g\left((\operatorname{Kerf})_{x}\right)=$ $h\left((\operatorname{Kerf})_{x}\right)$. This proves $g=h$.

Definition 2.7. Let X and Y be $B C I$-semigroups. A $B C I$ homomorphism $f: X \rightarrow Y$ is said to be regular if $\operatorname{Im} f$ is an \mathcal{I}-ideal of Y.

By the definition, for any subalgebra A of X, A is a regular \mathcal{I} ideal if and only if the inclusion mapping $\iota: A \rightarrow X$ is a regular $B C I$-semigroup homomorphism.

Propositon 2.8. Let $f: X \rightarrow Y$ be a regular BCI-semigroup homomorphism. Then for each \mathcal{I}-ideal I with $I \supseteq \operatorname{Kerf}, f(I)$ is an \mathcal{I} -ideal of $f(X)$. Conversely, for each \mathcal{I}-ideal K of $Y, f^{-1}(K):=\{a \in$ $X \mid f(a) \in K\}$ is an \mathcal{I}-ideal of X.

Proof. Assume $y * b, b \in f(I) \subseteq f(X)$. Then there exists $a \in I$ such that $b=f(a)$. Since $f(x)$ is an \mathcal{I}-ideal of $Y, y \in f(X)$. So there exists $x \in X$ such that $f(x)=y$. It follows $f(x) * f(a)=f(c)$ for some c in I. Thus $f((x * a) * c)=0$ and so $(x * a) * c \in \operatorname{Ker} f \subseteq I$. Since I is an \mathcal{I}-ideal of $X, x * a \in I$, it follows $x \in I$. Therefore $y=f(x) \in f(I)$. Clearly $0 \in f(I)$. Suppose $b \in f(I)$ and $y \in f(X)$. Then there exist $x, a \in X$ such that $f(x)=y$ and $f(a)=b$. It follows that $b y=f(a) f(x)=f(a x) \in f(I)$ and $y b=f(x b) \in f(I)$. Hence $f(I)$ is an \mathcal{I}-ideal of $f(X)$.

Conversely, let $x * a, a \in f^{-1}(K)$. Then $f(x) * f(a), f(a) \in K$. Since K is an \mathcal{I}-ideal of $Y, f(x) \in K$. It follows $x \in f^{-1}(K)$. If $x_{1}, x_{2} \in f^{-1}(K)$, then $f\left(x_{1}\right), f\left(x_{2}\right) \in K$. Since K is an \mathcal{I}-ideal of Y,
$f\left(x_{1} x_{2}\right)=f\left(x_{1}\right) f\left(x_{2}\right) \in K$. It follows $x_{1} x_{2} \in f^{-1}(K)$. Obviously $0 \in f^{-1}(K)$. Therefore, $f^{-1}(K)$ is an \mathcal{I}-ideal of X.

Let $\eta: X \rightarrow X / A$ be the natural $B C I$-semigroup homomorphism of X onto X / A. By applying Proposition 2.8, we have the following theorem:

Theorem 2.9. Let X be a $B C I$-semigroup and A be a regular \mathcal{I}-ideal of X. Then there is an one-to-one correspondence between the \mathcal{I}-ideals of X containing A and the \mathcal{I}-ideals of X / A.

References

1. S. S. Ahn and H. S. Kim, A note on I-ideals in BCI-semigroups, Comm. Korean Math. Soc. (to appear).
2. J. Ahsan, A.B. Thaheen, On ideals in BCK-algebras, Math. Seminar Notes 5 (1977), 167-172.
3. E.Y. Deeba, On the algebra of ideals of a BCK-algebra, Math. Japonica 30 (1985), 391-393.
4. K. Iséki, An algebra related with a propositional calculus, Proc. Japan. Acad. 42 (1966), 351-366.
5. K. Iséki, On ideals in BCK-algebra, Math. Seminar Notes 3 (1975), 1-12.
6. K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica 21 (1976), 351-366.
7. Y.B. Jun, S.M. Hong and E.H. Roh, BCI-semigroups, Honam. Math. J. 15 (1993), 59-64.
8. Y. B. Jun, S. S. Ahn, J. Y. Kim and H. S. Kim, Fuzzy I-ideals in BCIsemigroups, submitted.
9. Y. B. Jun, Y. H. Kim, J. Y. Kim and H. S. Kim, Fuzzy commutative \mathcal{I}-ideals in BCI-semigroups, submitted.
10. C.Z. Mu and W.H. Xiong, On ideals in BCK-algebras, Math. Japonica 36 (1991), 497-501.

Department of Mathematics Education
Dongguk University
Seoul 100-715, Korea

Department of Mathematics Education
Chungbuk National University
Chonguu 361-763, Korea

[^0]: Supported (in part) by the BSRI Program, MOE, 1995, Project No. BSRI-95-1423.

 Received by the editors on March 2, 1996.
 1991 Mathematics subject classifications: Primary 06F35.

