223

FYYEsAT
H6A 15
199644 68

A A g H E] V]| Eo] 7|¥ks &
A A AR B3t =

o) F FUeuw A FP

Manufacturing Systems Modeling Tools
Based on Object —oriented Petri Nets

The paper proposes an approach, called OPNets, for modeling and validating manufacturing
systems that is based on object — oriented high—level Petri nets. In OPNets, modeling components
of Petri net are constructed into hierarchical objects that communicate with each other by pass-
ing messages. To enhance the reusability and maintainability, OPNets organizes a system into hier-
archical objects that inherit attributes and behavioral properties from the object of super class
and object —interaction relations are separated from the internal structure of object. The model-
ing scheme of OPNets tries to resolve the complexity problems of Petri net. To illustrate the mod-

eling schemes of OPNets, a storage/retrieval example has been proposed.

1) Mdoista 293 R
2) dasrled Hax A9dsd

224

I. INTRODUCTION

Petri nets have been found to be useful
for describing and analyzing real—time
systems such as manufacturing and
robotics systems [Baldassari and Bruno
1988 ; Camuri and Franchi 1990] that are
usually characterized by distributed and
concurrent nature. However, the complexi-
ty of the model is drastically increased as
the number of reachable states and events
in Petri nets grows [Muraia 1989]. There-
fore the complexity problem is one of the
main obstacles in applying Petri nets to
large complex manufacturing systems.

As attempts to resolve the problem, high
level Petri nets [Genrich and Lautenbach
1981 ; Sibertin—Blanc 1985] and net re-
duction methods [Lee and Favrel 1985]
are developed. High level Petri nets, which
generalize tokens as identifiable objects
and inscribe expressions on transitions,
have been recognized as suitable formal-
isms to integrate the phases of specifica-
tion, simulation, prototyping of discrete
event dynamic systems such as process
control systems, and real—time system
modeling. High level Petri nets, however,
often fail to reduce the systems into of

manageable size. Petri net reduction is an-

other way of solving the problem that re-
duces the system model to a simpler one,
while preserving the system properties to
be analyzed. However, they basically re-
duce the graphic structure of the net, dis-
regarding the structural properties of the
system : a system is usually composed of
its subparts that have their own behaviors -
and communicate with each other through
exchanging messages.

More fundamental solution to the com-
plexity problem can be provided by object
—oriented approach in which objects are
regarded as entities that have their own
data and actions to be carried out in
response to incoming messages. Object—
oriented approach also emphasizes the im-
portance of inter—object behavior. It is
recognized that the well organized inter—
object behavior enhances the maintaina-
bility and reusability. The inter—object be-
havior should be designed such that each
object is organized as independent as poss1
ble by decoupling the communication
knowledge. An object—oriented high level
Petri nets called OPNets is proposed in the
paper to resolve the complexity problem. It
enhances the maintainability by organizing
a system into concurrent objects and sepa-
rating the synchronization constraints

from the internal structure of each object.

II. OBJECT ORIENTED
HIGH LEVEL PETRI
NETS

Object —oriented high—level Petri nets
called OPNets is developed to manage the
complexity problem and hence to increase
the maintainability of system modeling. To
briefly introduce the OPNets, concepts of
system, object, external and internal struc-
tures of object, and relation defined in the
OPNets are explained in the following sec-
tions. The detailed explanations of OPNets
are given in [Lee and Park 1993].

1. Systems

In OPNets, a system is composed of mu-
tually communicating hierarchical ‘objects
and their interconnection relations. Objects
in OPNets are hierarchically organized en-
tities and incorporate aggregation and
classification concepts of object—oriented
approach. Communications between ob-
jects are supported by a set of links called
interconnection relations that connect re-
lated objects. In Figure 1, objects are rep-
resented by O and the interconnection rela-
tions R are represented by gates g and

their input and output flow relations.

225

SYSTEM = (O,R),
where
O : a set of objects,

R : a set of interconnection relations.

2. Objects

Each object has an external structure
and an internal structure that are separat-
ed for information hiding. External struc-
ture is designed for the message communi-
cations between objects, whereas the inter-
nal control flow of each object is represent-
ed by the internal structure. As shown in
Figure 1, the internal structures of objects,
except 02, are not identified from outside
while the interconnection relations be-
tween objects are represented externally,
where objects are represented by rounded
boxes. The internal control flows of O2 are
also externally hidden, but shown in Fig-
ure 1 for the illustration of the internal

structure.

2.1 External Structure of Objects

The external structure of an object
O: € Oisrepresented by the 6 —tuple,

0.= (H, IG,, 0G,, MI, OM,, F;),

where

H, : an object hierarchy,

IG, : a set of input gates of object O,.

226

OG; . a set of oulput gates of object O..

IM; . a set of input message queues of ob-
Ject O,

OM; . a set of output message queues of
object O,.

F; . a set of flow relations of object O..

Parent objects are specified in an object
hierarchy to incorporate inheritance across
the object hierarchy. Gates, which are non
empty subset of transitions in Petri nets,
execute message communications between
objects by firing. Input gates and output
gates perform incoming and outgoing mes-
sage communications, respectively. Graphi-
cally, gate gi is represented by a thick

solid bar as shown in Figure 1. A message

queue is a place and can be regarded as an
input and output window through which
communications between outside objects
and the actions of the object are possible.
Message queues are composed of reply
queue to model wait—and—reply mecha-
nism and synchronization queues to res-
trict the transition firing sequences be-
tween objects. Graphically, message que-
ues are represented by small ovals coming
out from objects where the single and dou-
ble ovals represent the synchronization
and reply queues, respectively. Flow rela-
tions are represented by arrows that con-
nect input gates and input message que-
ues, or output message queues and output

gates.

g2
Os

P

Figure 1. Graphical Representation of OPNet Structure

2.2 Internal Structure of Objects

Two types of objects are defined in

OPNets . primitive object and composite
object. A primitive object is a basic entity

for behavior representation in which static

properties and dynamic behaviors are de-
fined. A composite object is an aggregate
of more than one primitive objects and/or
other composite objects. Figure 1 depicts a
composite object O, that is an aggregate of
a primitive object O,; and a composite ob-
ject Oy Detailed discussions of internal
structures of a composite object and a
primitive object will be given in the follow-

ing section.

2.3 Internal Structure of a Composite
Object

Internal structure of a composite object
defines a set of objects contained in the
composite object and their interconnection
relations. Let CO; be a composite object i
and PO; denotes a primitive object i. Then
object O equals CO U PO, where CO = U,
CO; and PO = Ui PO. The internal struc-
ture of a composite object CO, ICO, is
characterized by the following 3 —tuples.

ICO; = (X,Y, R),

where

X={X| X € P(C0), CO« X},

Y={Y |Y € P(PO)},

R; . a set of interconnection relations.

X is an element of power set of CO, ex-

cluding sets containing CO; itself, and Y is

227

an element of power set of PO. Intercon-
nection relations between these objects are
represented by gates and their input and

output flow relations.

2.4 Internal Structure of a Primitive

Object

For each primitive object, static proper-
ties and dynamic behaviors must be clear-
ly specified for the complete and explicit
modeling of control structures. Static prop-
erties include algebraically specified data
structures, while dynamic behaviors show
the partial ordering of actions and the in-
fluence of the object state on its actions,
which implies that actions of an object
may only be enabled when the object i1s n
a specific state, and must be delayed until
the object is in a state consistent with the
execution of the actions. For example, if a
buffer is empty, then the state of the buff-
er is inconsistent with the execution of a
deque operation to remove an item from
the buffer. The dynamic behavior of a
primitive object O is shown in Figure 1.

An internal structure of a primitive ob-
ject PO, can be defined as follows :

IPO, = (D, SV,, S, AT, LF, IN;, M,)

where

D : a set of attributes of PO,

SV, : a set of state variables PO,

228

S: . a set of states of PO,

AT:; : a set of action transition of PO,
LF; : a set of local flow relations of PO,
IN; : a set of instances of PO,

M, . initial marking of PO..

A set of attribute and a set of state vari-
ables constitute a data structure of a prim-
itive object. Attributes and state variables
are similar in semantics, however, the val-
ues of attributes are static and may be
stored in files while the state variables are
changing according to the state changes of
instances. State is an non empty subset of
places which represents the current status
of the object. Each state is associated with
an unary state predicate characterizing
the state variables. The state predicate is
defined by a function mapping from a par-
ticular state into a tuple of state values of
a primitive object.

An action transition, which is a subset
of transitions, plays a role of synchroni-
zation and performs predefined actions
when precondition of action transition is
met. An action in action transition repre-
sents an execution of a - sequential pro-
gram. Action is classified as external or in-
ternal depending on whether it provides a
service to other objects or not. External

actions are also divided into asynchronous

actions, synchronous actions, and response
actions. Asynchronous action is a side—ef-
fect free action that is instantly triggered
upon receipt of request message disregard-
ing the current state of the object, there-
fore, it doesn’t need to be sequenced with
other actions. Message queues are not re-
quired to be connected for an asynchron-
ous action since it is invoked by other ob-
jects without any explicit interconnection

relation between the server and the client.

A synchronous action of an object is in-

voked synchronously with the external
actions of the other object to which
synchronization queue is connected. In
addition to synchronization, a response
action, to which reply queue is connected,
also returns the result to the client. To in-
ternal actions, no message queues are con-
nected since they do not provide any serv-
ice to external objects. However, partial se-
quences between internal actions and
synchronous/response actions should be es-
tablished for the complete modeling of dy-
namic behavior.

Local flow relations are internal control
flows of a primitive object with the follow-
ing four types: flows from input message
queues to action transitions, flows from
action transitions to output message

queues, flows from states to action transi-

tions, and flows from action transitions to
states.

Each object has instances that are
uniquely referenced by identifiers of the in-
stances such as names. Instances are rep-
resented by tokens that are initially given
to primitive objects. Tokens of instance
type stand for specific instances of the ob-
ject, therefore, they reside within the
boundary of object and are not allowed to
be created nor destroyed during the net ex-
ecution. On the other hand, tokens of mes-
sage type represent the messages for com-
munications between objects that are
allowed to cross the boundary of objects
and hence allowed to be created or de-

stroyed.
3. Objgct Interconnection Relations

In order to decouple the communication
knowledge as much as possible from each
object, we have adopted a scheme in which
both the sender and receiver of messages
may not need to know the exact communi-
cation type of the other side and the data
type adaptation between the communica-
tion channels are partly supported by an
intermediate transition. Therefore the com-
munications between objects are perform-

ed by firing the intermediate transitions, 1.

229

e., gates. In Figure 1, firing of g, removes a
message from the message queue of object
0, and puts it into that of object O,

The interconnection relation R is a bina-
ry relation on the Cartesian product of the
objects :

Rc 0O XxO0.

The actual interconnection of objects is
established through the gates, by selecting
IG;s and OG;’s such that if (0, O0;) € R,
then OG; N IGs + @, where IG,s are the
input gates of object O, and OG,’s are the
output gates of object O. That is, if g €
IG; and g € OG; then O; and O; are con-
nected through gate g, and g; is connected
to omg; and img, where omq, € +g and
imq; € g+ . The omg; and img, are called
output message queue and input message
queue respectively. The ¢ t(¢ p) denotes
the set of all input places (transitions) of
a transition t (place p) and t«(p+) de
notes the set of all output places (transi-
tions) of a transition t (place p). Then O,
and O; are called a sender and a receiver
of message, respectively. Thus the inter-
connection relations of objects can be de-

fined as follows

R,={(0, 8,0, | g € OG; N IG}}.
In Figure 1, 0, and O, are connected

through g,.

230

. AN ILLUSTRATIVE
EXAMPLE

1. Problem Description

To illustrate the modeling of OPNets, an
automatic storage retrieval system [Son
et.al. 1989] is.described that furnishes
working stations with appropriate part

boxes stored in part box storage as shown

in Figure 2. A worker picks up part boxes
from a part box storage and puts them
down on conveyor 1 or 2 according to the
cell of an automatic storage to which the
part boxes are sent. An automatic storage
has 15 cells to store 6 different types of
part boxes and each cell can contain about
15 to 20 boxes. Part boxes that are about
to go to the cells of number 8 to 15 or 1 to

7 are laid on conveyor 1 or 2 respectively.

Legend

——4pp Flows of Filled Boxes
— ~P Flows of Empty Boxes

Figure 2. An Automatic Storage Retrieval System

The worker also takes up empty boxes
from conveyor 2 and then stores them on
émpty box storage. The part types and
their appropriate cell number of an auto-
matic storage are summarized in Table 1.
When the same kind of part boxes are

stored on more than one cell like part type

1, the part boxes are stored or drawn ac-

'cording to priority. This makes box han-

dling operations more convenient since
high priority cells are more efficient to
work with. For each part box, the former
cells listed in Table 1 have priority over

the latter ones. When the current number

of empty part boxes in cell 5 of an auto-
matic storage exceeds certain level, the
worker is notified not to lay filled part
boxes from part box storage to conveyor

2. The empty boxes in an automatic stor-

231

age are laid on conveyor 2 if the conveyor
2 1s emptied and is moved backward to
store empty part boxes to an empty box

storage.

Table 1. Part Type and Cell Number

Part Type Cell Number
#1 11,15, 7,4
#2 12, 13, 14
#3 1,23
#4 8, 9
#5 10
#6 6
empty box 5

The movement of part boxes from con-
veyor 1 or 2 to the appropriate cells of an
automatic storage is guaranteed by the
transporter 1. Transporter 1 also picks up
empty boxes from cell 5 of an automatic
storage and then put them down on con-
veyor 2 that moves them to empty box
storage by reversing the moving direction.
Transporter 2 releases the boxes from all
the cell of an automatic storage (except
cell 5) and deposit them on supply line
that furnishes a part box queue of an ap-
propriate working station with boxes. The
empty boxes that have finished operations

on a working station are sent to cell of

number 5 by transporter 2.

Six working stations are numbered from
1 to 6 and the ith working station pro-
cesses part of type i. The elapsed process-
ing times required for the working stations
are ranged from station 1 to static 6 in an
increasing order. To improve the system
efficiency, higher priority is given to the
request for the parts that consumes less
time in working station. Therefore priority
1s given firstly on the requests for the part
boxes of type 1, secondly on type 2, ..., and
finally on type 6. After the processing of
an working station has been completed, a

worker in the working station lays the

232

empty box on return line and loads filled
boxes on station from part box queue,
which automatically signals a request for
the part box to transporter 2. The type of
part box to be delievered to supply line is
determined by transporter 2 according to
priority. Any request for the part boxes
that are not provided by an automatic stor-

age is backlogged.
2. Modeling Process

An object—oriented development meth-
od to organize the system as autonomous
objects is presented in this section. The pri-
mary criterion for the decomposition of a
system 1is that each module in the system
denotes an object. The object has its own
set of applicable operations and communi-
cates with other through message passing.
The modeling process recognizes the im-
portance of abstraction and information
hiding. For each object, the external part
and the internal part are developed but the
internal part is not identified from outside.
The steps of modeling process are ex-

plained below.

2.1 |dentification of Objects
The first step is to identifiy the objects

and their attributes in the target system.

The objects are usually derived from
nouns in describing the problem space. The
objects. their attributes, and state varia-
bles in an automatic storage retrieval sys-
tem are extracted as shown in Tables 2.
Working station has two attributes (no,
priority) and a state variables (states).
For each instance of a working station,
priority is valued according to the no of
the instance and lower priority value me-
ans higher priority. There are six instances
of working station which have priority val-
ues equals to their no’s, that is s; with pri-
ority equals to 1, s; with priority to 2, and
so on. The addresses of a part box repre-
sent the cell numbers of an automatic stor-
age to which the part box is sent.
The address—rule of part boxes is as fol-
lows :
if type = 1 and contents= full
then address = {11, 15, 7,4},
if type = 2 and contents= full
then address = {12, 13, 14},
if type = 3 and contents= full
then address = {1, 2, 3},
if type = 4 and contents= full
then address = {8, 9},
if type = 5 and contents= full
then address = {10},
if type = 6 and contents= full
then address = {6},

if contents= empty

then address = {5} ;

There also exist simple queues to hold
part boxes; they are part box storage,
empty box storage, supply line, return line,
and part box queue. Each queue has an at-
tribute (queue—size) to indicate the cur-
rent number of part boxes in the queue.
An automatic storage is composed of 15
cells to store part boxes. Each cell has at-
tribute (no) to identify the cell and capaci-
ty to limit the total number of part boxes
allowed in the cell. Therefore the current
total number of part boxes in the cell (#of
_part) does not exceed the capacity of the
cell, which is described in the construct
(with constraints) attached to the end of #
of —part. The contents—rulel of cell (which
is invoked whenever the value of #of_part

is modified) is defined as follows :

if #of_part < capacity then contents
= empty

else contents = full ;

Conveyor 1 and conveyor 2 share the
same properties. they are of same kind,
and have same attributes, state variables,
etc. Howe\}er, each one has some specific

properties . directions specified to convey-

233

or 2. In order to reduce redundancy in
modeling such objects, a super class that
have common properties of its subclass is
introduced and each subclass has only spe-
cific attributes and inherits the common
properties from the super class. Conveyor
1s a super class of conveyor 1 and convey-
or 2. The isA construct establishes the hier-
archy. The properties of a conveyor are in-
herited to conveyor 1 and conveyor 2.
Transporters also have the same hierarchi-
cal structure : transporter 1 and transport-
er 2 inherit the properties of their super
claés transporter.

The contents_rule2 of conveyor is de-

clared as follows

if #of_part = 0 then contents

= empty,
if 0 < #of_part and #of -part

< capacity then contents = something,
if f#fof _part = capacity then contents

= full ;

2.2 |dentification of Actions

The identification step serves to charac-
terize the actions of each object. In order
to model control structure of each object
as explicitly as possible, an action repre-
sents an execution of a sequential pro-

gram ; hence no concurrency is allowed in

234

each action. The actions of objects are
identified and listed in Table 3. Actions to
increase the value of queue_size in objects
holding part boxes are omitted in Table 3

but shown in Figure 3.

2.3 Establishment of Visibility

Once the objects and their actions have

been identified, the external visibility of
the objects are established as shown in Fig-
ure 3. The static dependencies among ob-
jects are identified to consider how the ob-
jects are related to one another. Internal
actions are not identified in Figure 3 since
they does not provide any service to other

objects and hence hidden from outside.

Table 2. Object of an Automatic Storage Retrieval System.

Objects Attributes State Variables Instances
no: integer[1..6];
. . . status: one of
working station | priority: integer . . . 8y, 82, 8y 54 53 8
with rule : priority = no; {wait,setting, processing};
no: integer;
type: integer[1..6]; status: one of -
part box address: set of in {empty, full) pyi=l...n
with rule : address_rule;
part b;: queue_size: integer; part_box_storage
automatic .
storage cells: set of cell; automatic_storage
no: integer;
capacity: integer;
#of_part: integer contents: one of
cell if modified invoke {empty, full} with rule: py i=L...n
contents_rulel with contents_rulel;
constraints:
#of_part <= ca pacity;
worker worker_id: integer; status: one of {busy, idle}; worker 1
address: set of integer; contenst: one of {empty,
conveyor capacity: integer; something, full} with rule:
#of_part: integer; contents_rule2;
conveyor 1 isA: conveyor; conveyor._1
isA: conveyor;
conveyor 2 directioncone of {forward, - conveyor_2
backward};
empty bo: .
stl:'yage) queue_size: integer; empty_box_storage
status: one of {order,
porter F _noiinteger; out_of_order};
transporter 1 isA: transporter; transporter_1
isA: transporter;
transporter 2 requests: set of part box; transporter_2
supply line queue_size: integer; supply_line

235

Table 3. Actions of Objects in an Automatic Storage Retrieval System.

Object Actions (abbreviation)
. *(1) work (work)
v:::tli(::‘g *(2) unload empty box to return line (unload)
(3) load filled part box to station (load)
automatic **(4) determine cell to which part box is stored (determine)-
storage **(5) choose cell from which part boxes are drawn (choose)
& (6) select empty boxes to be drawn (select)
{7) pick up part boxes from part box storage (pick up)
worker *(8) lay part boxes on conveyor 1 (lay down)
*(9) lay part boxes on conveyor 2 (lay down)
(10) move empty boxes to empty box storage (move)
conveyor (11) move part boxes forward (move for)
(12) move part boxers backward (move back)
conveyor2 (13) reverse direction (reverse)
(14) store part box on automatic storage from conveyor 1 (store)
transporter 1 (15) store part box on automatic storage from conveyor 2 (store)
(16) deposit empty part boxes from cell 5 to conveyor 2 (deposit)
*(17) deposit part boxes on supply line (deposit)
transporter 2 (18) store empty boxes on automatic storage from return line (store)
(19) determine type of part box to supply line (determine)
s‘;ifx’f;ly (20) move part box of type i to part box queue of station i (move)
P:;:;:::;X *(21) signal request for the part box to transporter 2 (signal)

2.4 Establish External Interfaces and
Implement Each Object

A suitable representation for the inter-

* : internal actions
** : response actions
other : synchronous actions

of an object. In OPNets, interfaces are es-
tablished by message queues and gates

that relate message queues. Therefore the

faces and for each object are selected and

implemented in this step. The specification -

of external interface serves as a contract
between the “clients” of an object and the
object itself that forms the boundary be-

tween the outside view and the inside view

specifications of message queue and gates
constitute the external interfaces.

Dynamic behavior of each object is also
established in this step using high level
Petri nets that identify the partial sequenc-

es of actions in each object and the influ-

236

ence of object states on its actions. Some

of the critical objects to describe the

part box storage

conveyorl

system behavior are shown in Figure 4.

empty box storage

conveyor2

transporterl

automatic storage

Fiture 3. External Visibility of Objects

3. Analysis of the Inter —object

Behavior

Since analyzing a large éomplex net in a
single step often produces erroneous
results and is computationally inefficient,
we have developed a two step analysis
method [Lee and Park 1993] which vali-

dates each object in a first step and then

checks the synchronization -constraints
among the objects as a global analysis
scheme. The procedure provides a way to
manage the complexity by dividing the net
into the smaller nets and then applies the
analysis in two steps keeping the global
validation intact. Briefly, the two step vali-
dation procedure is as follows (detailed
discussions are given in [Lee and Park
1993]).

g21

237

Figure 4. OPNets Modeling of Working Stations

In the first step, a local analysis is per-
formed to validate the internal behavior of
each object and to draw an interface
equivalent net that shows only the firing
sequence of the input and output gates, i.
e., the synchronization constraints. In the
second step, a synchronization analysis is
performed to validate the interface equiva-
lent net, which is constructed in the first
step, to check the consistency of communi-
cations between objects. The interface
equivalent net of an automatic storage re-
trieval system in which no deadlock detect-

ed is given in [Lee and Park 1993].

V. CONCLUDING
REMARKS

OPNets integrates the formalities and el-
egant expressions for concurrent control
structures of the Petr1 nets, and the
abstraction and powerful structuring
schemes of the object—oriented approach.
OPNets particularly focuses on the inde-
pendent structure of objects and hence on
the maintainability and reusability. With a
view to Improve the independence of ob-

jects, the communication knowledges are

decoupled as much as possible from each

238

object and synchronization constraints are
clearly separated from the internal control
logic of each object. Validation of the
whole system is much simpler when the
partitioned nets are analyzed separately
and then the communications are checked
as a second step.

Contrary to the benefits, the structure of
OPNets increases the number of places
and transitions because message queues
and gates should be added in order tqQ sepa-

rate the internal structure from the exter-

1]

Baldassari, M and Bruno, G, “PROTOB : Object
—oriented Graphical Modeling and Prototyping
of Real—Time Systems,” Second International
Workshop on Computer — Aided Software Engineer-
ing, July 1988, pp. 28/6—28/10.

Bruno, G and Marchetto, G, “Process—Translat-
able Petri Nets for the Rapid Prototyping of
Process Control Systems,” IEEE Transactions on
Software Engineering, Vol. SE—12, No. 2, Feb.
1986, pp. 346—357.

Camurri, A and Franchi, P, “An Approach to the
Design and Implementation of the Hierarchical

Control System of FMS, Combining Structured

L

[a

nal structure. The maintainable and reusa-
ble structure can, however, outweigh the
burden of simple increase in the number of
places and transitions. A mechanism to in-
herit a behavior in addition to attributes
and actions is being developed that will
preserve the integrity of each objects and
the synchronization constraints. An execu-
tion to the timed Petri nets that incorpo-
rates timing constraints into the OPNets is

remained as a further study.

fa

Knowledge Representation Formalisms and High
—Level Petri Nets,” Proc. of IEEE Int'l Conf. on
Robotics and Automation, 1990, pp. 520 —525.

Freeman, P and Malowany, A, “SAGE : A Deci-
sion Support System for the Sequencing of -Opera-
tions within a Robotic Workcell,” Decision Sup
port Systems 4, 1988, pp.329—343.

Garnousset, H, Farines, J, Cury, J, Canty, E and
Kaestiner, C, “Simulation and Implementation
Tools for Manufacturing Systems Modelled by
Petri Nets with Objects,” International Conf. CIM
90, June 1990, pp. 605—613.

Genrich, H and Lautenbach, K, “System model-
ing with high level Petri nets,” Theoretic Comput.
Sci., vol. 13, 1981, pp. 109—136.

Kodate, H, Fujii, K and Yamanoi, K, “Represen-
tation of FMS with Petri Net Graph and its Ap-
plication to Simulation of System Operation,”
Robotics and Computer Aided Manufacturing, vol.
3, no. 3, 1987.

Lee, K.H. and Favrel, J., “Hierarchical Reduction
Method for Analysis and Decomposition of Petri
Nets,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. SMC—15, No. 2, March 1985,
pp.272—280.

Lee, Y.K. and Park, S.J., “OPNets : An Object—
Oriented High Level Petri Net Model for Real—
Time System Modeling,” The Journal of Systems
and Software, vol. 20, no. 1, January 1993, pp.69
—86.

Murata, T., “Petri Nets : Properties, Analysis
and Applications,” Proceedings of the IEEE, vol.
77, no. 4, April 1989, pp. 541 —580.

Paolo, B and Gini, M, “An Object—oriented ap-
proach to robot programming,” Computer—Inte-
grated Manufacturing Systems, vol. 2, no. 1, Feb-
ruary 1989, pp. 29—34.

Peterson, J., Petri Net Theory and the Modeling of

239

Systems, Englewood Cliffs, 1981.

Sibertin—Blanc, C., “High Level Petri Nets with
Data Structure,” 6th European Workshop on Petri

Nets and Applications, Espoo, Finland, July 1985.

Sibertin—Blanc, C. and Bastide, R., “Object Ori-
ented Structuration for High Level Petri Nets,”
11th Conference of Application and Theory of
Petri Nets, 1990.

Son, S.K., Kim, Y.H. and Lee, K.H., “Modeling
on a Simple Automatic Storage/Retrieval System
by Grafcet Model,” Proc. of Korea OR/MS Confer-
ence, 1989, pp. 143—150.

Tyszberowics, S. and Yehudai A., “OBSERV—A
Prototyping Language and Environment combin-
ing Object Oriented Approach, State Machines
and Logic Programming,” HICSS, 1990, pp. 247
—256.

Wilson, R.G. and Krogh, B.H., “Petri Net Tools
for the Specification and Analysis of Discrete
Controllers,” IEEE Transactions on Software Engi-

neering, vol. 16, no. 1, January 1990, pp. 39—50.

Yau, S.S. and Caglayan, M.U., “Distributed Soft-
ware System Design Representation Using Modi-
fied Petri Nets,” IEEE Transactions on Software
Engineering, vol. SE—9, no. 6, November 1983,
pp. 733—745.

240

& MR O

TEAZ} oldE RS FAstE 2Ystn, FFHEI|Ed Ao A
Ateh HhALEHIE HEEHATH 1992 1097 1995 297h%] A RAA AT L A}
AR eddos 2RPeH, 1995 39PE Adetn AYYRstalo) 4
- olth F8 B ok HEYUES o] 83 YAA 28 mEH B B AT Edo] A

2, Sl AL A, AR A2 Sl

FEAR AR AT BAF T, BEA| e Q AT BHANE AE 4
9IS Uz R el AaY ehe ATl PR A5AAT. A 9
| 169 Hae A mas BEH e A9 RATAL 202 A sk
| 2o Fa BARoks AYARA Y, FuA2Ad B, CSCW, AAAr%, AGH

7l&, AEd ol otk

