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Comparison of FDDO and DSMC Methods
in the Analysis of Expanding Rarefied Flows

C. H. Chung

B33t Fol 40l glolA FDDOS AHRAPE 9] vl =
A3 %

ol x=&& T ARE Ao A FurFe R0 glolx BALHAFY
2 AYE F32HEH (finite-difference method coupled with the discrete-ordinate method,
FDDO)®  AHEAMY (direct~simulation Monte-Carlo method, DSMC)e] W m =Yt}
FDDOE °j&3 E4dAe FEAERYE sty ztdaid 2294 (Boltzmann
equation)o] EFE4HEY L o]4dd 288 FhdMe AL} BET FUgME B
A4FEE AT UolRWARATFeR s F3AEgdedsle a8 HQoh
G BAY M EARdR 7PpHZFT 2 d (variable hard sphere model, VHS)o], 25 4Z
grndz = vAAISFH (o time counter method, NTC)o] A A} AF dha F 71x
W o xF dRdMe FAEE AMAFAE of$ 2 dAslgen, =& 989
plume g%l FDDO o3 A7} AHBAPY 27 s ATd v)ste] o3+

=¥ AFE vy

Key Words: 3)8}7])3) 58 (Rarefied Gas Flow), =25 &(Nozzle Flow), 24433
(Discrete-Ordinat Method), 3+ ¥ (Finite-Difference Method), 8%

APH(DSMC)

1. Introduction

The flow of a gas expanding through a
nozzle and into a surrounding low-density
environment is one of the important problems
in the field of gas dynamics. Applications of
this type of flow are found in vacuum science
and high altitude flight such as the flow field
for low-thrust resistojets. This type of flow
involves high angled backflow, in which

strong nonequilibrium effects due to rapid

1 RN drystn sz

expansion into a low-density environment
play an important role. The fluld experiences
continuum, transition, and free-molecular flow
regimes. Consequently, the conventional con-
tinuum gas dynamics may not be adequate
and an approach based on molecular gas dy-
namics is required for the analysis of the
flow.

The direct simulation Monte-Carlo(DSMC)
method [1] is a simulation technique for the
computer modeling of a real gas flow by a
representative set of molecules. The move-
ments and collisions between the molecules

are decoupled for a discrete time interval.
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The velocity and position of the set of mol~-
ecules during the discrete time interval are
modified as the molecules are concwrently
followed through collisions and boundary in-
teractions in simulated physical space.

The finite-difference method coupled with
the discrete~ordinate method (FDDO) is a
numerical method to simulate low density
flow fields. In the FDDO method, the
Boltzmann equation simplified by a model
collision integral is transformed into a set of
partial  differential equations
continuous in physical space.

which are
This is done
by employing the discrete-ordinate method.
The phase- space dependence of the model
Boltzmann equation is effectively removed
by  replacing the integration over the
phase-space of the distribution functions by
appropriate quadrature formulas. The set of
partial differential equations are then solved
by means of a finite-difference approximation.

In the present study, two different ap-
proaches, the FDDO and the DSMC methods,
are employed in the analysis of a rarefied gas
flowing through a two-dimensional nozzle
with a realistic nozzle lip and expanding into
a surrounding vacuum environment. A com-
puter code which was developed by Chung et
al [23] to investigate the flow of rarefied
gases through internal geometries has been
extended to simulate the flow around a more
complex geometry.  The feasibility of the
FDDO method in analyzing this kind of flow
is demonstrated by comparing the results
with those of the DSMC method.

2. Problem Statement

Consider the steady flow of a single com-
ponent, monatomic gas through a two dimen-
sional nozzle, as shown in Fig. 1. The equil~-
ibrium number density, temperature, and
pressure of the gas at the stagnation chamber
upstream of the nozzle inlet are denoted as

The equili-
brium number density, temperature, and
pressure of the gas in the surrounding low-

ny, T, and Py, respectively.

density environment are denoted as bn,, T,
and P, respectively. The temperature of the
nozzle surface is denoted as 7,. The width
of the nozzle inlet is2Y, and that of the exit
is 2Y,. The nozzle has a constant width
section of length /; and a diverging section
of length /; with a diverging angle 6. The
width of the nozzle lip facing the downstream
is /3 and the length of the nozzle lip facing

the positive y-direction is /j.
3. Finite-Difference Method

3.1 Governing Equation

We consider the steady-state model Boltz-
mann equation without an external force in a
Cartesian coordinate system, as illustrated in
Fig. I!

of 2f _
Vesk + Vsl = o)

Fig. 1 Nozzle Geometry
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where x and y are Cartesian coordinates of
the physical space, V, and V, are the velocity
components of the molecules, f(x,y, V,, V,)
is the distribution function and J, is the
model Boltzmann collision integral, which is
some functional of f. The moments 7, U,
and T are given by

n= [rav
nU = [Vvidv @)
3nRT = [C¥av

where R is the gas constant and C is the
V—-U.
The collision integral of the kinetic models,

peculiar velocity,

Jw can be represented generally in a form
Jm = A(F~f) 3

Here A_.F approximates the replenishing col-

lisions, and A.f the depleting collisions. The

collision frequency, A, usually is a function
of moments and is independent of molecular
velocities, whereas F is a function of both
moments and molecular velocities.

In the present study the BGK model [4] is
chosen for the sake of simplicity. In this
model, F is given by the Maxwell-Boltz
mann distribution:

F = n(ZnRT')“a/Ze('CZ/Z’m (4)
The collision frequency A. is taken to be of
the form

A, = M2RT 5)
y i3
where m is the molecular mass. The vis-
cosity u# is assumed to have a temperature
dependency [5]
A= (e ®)
where ¢ is a constant for a given gas. The

viscosity at the stagnation chamber upstream

A AF A
of the inlet, g, is related to the mean free
path A, in the stagnation chamber by the
relation

2, = 48 £o %

T 5 mn,(2x RT,)?

To reduce the number of independent vari-
ables, the following reduced distribution func-
tions are introduced [6]:

4o
g3V V)= [ A3V V)V, ®

+ o
W3,V V)= [ Vx5, Vi, V)AV.®)

By integrating out the V/, dependence with

the weighting functions 1 and V%, respective-

ly, the equations for the reduced distribution
functions with the collision integral of kinetic
models of Eq. (3) are obtained from Eq. (1):

V,—"’f + V,.%% +Ag=AG (10)
v,k 4 V,,—g—% +Ah=AH (11)
where

+0
Glx,», V,, V) = f_ _ Fav,

+ o
H(x’ ¥, {/x' ‘/y) = j;m VZFd‘/z

By introducing a polar coordinate system
for molecular velocity space which is defined

as
V., = Vsine
V, = Vcos ¢ (12)

¢ = tan 1(V,/V,)
and applying general transformation rules for
physical space, the governing equations in the

new coordinate system (7, &) are written
as [7]

08 _0g —

Bav +Caé +Ag=A,G (13)
ok oh _

B~ ” +C—aé +AhL=AH 14)

where
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B=(Vcospx: — Vsine ys)/ /],
C=(Vsingx, —Vcos e y,)/];

and J; is the Jacobian of the transformation.

3.2 Discrete-Ordinate Method

In order to remove the velocity space de-
pendency from the reduced distribution func-
tions, the discrete-ordinate method [6] is em-
ploved. This method, which consists of re-
placing the integration over velocity space of
the distribution functions by appropriate inte-
gration formulas, requires the values of the
distribution functions only at certain discrete
speeds and velocity angles. The choice of the
V and ¢ are dictated by
the consideration that the final interest is not
in the distribution functions themselves but in

discrete values of

the moments. Hence, the macroscopic mo-

ments given by integrals over the molecular
velocity space can be calculated by proper
integration formulas. Applying the method,
the following quadratures are substituted for
the integrals in Eqgs. (2):

25
n=;f0 f)3g5d¢
= 2: N ,\ i A
nlU, Zo'.fo P,V,singg,de
2z
nU).==2f P,V cos pg;de (15)
5 0

2%
%m: zfo Py(h; +Vig,)de

—n(LE+U5)
(6 =1,2,3,~,N-1,N)
where P; is the weights of the modified

Gauss-Hermite quadrature [7,8] for the dis-

crete speed 1,;, and g, and h; denote
glé€,7,Vy,e) and A(E,7,V;, 0), ve-
spectively. Thus, instead of solving the

equations for a function of physical space and
molecular velocity, the equations are ftrans-
formed to partial differential equations which

are continuous in physical space but are point
functions in molecular speed V and velocity

angle.
BoEs 008 L4, —AG, 6
97 ENG As s
R dhs _
Ba” +C——a$ +Ahq;=AH;, A7)
where

B=(Vscospx, —V,sinev:)/J;
C=(V;ysinpx, —V,cospy,)] ]

VA e
e [ RE 1, Vie, VAV,

ng

_ 1 (e
HS'_ na f-m ‘/zf(g' ”"/O‘ngvz)dvz

3.3 Numerical Procedure

The finite-difference approximations of Egs.
(16) and (17) are solved by the method of
successive approximations.  Details of the
method may be found in Refs. 2, 3, and 7.
In each iteration step, the calculation starts at
(n=1w—0n, E=£6,1AE)

For this

the point
for a chosen discrete-ordinate V.
discrete-ordinate, the values of the distri-
bution functions are then determined at all
(7, &) grid points for the quadrant of ve-
7/2 <¢<nx. Then, applying
the symmetric condition, the values of the

distribution functions at the centerline are
determined for the quadrant of velocity angle

7/22 ¢ =0 and calculated at all (7, &)
grid points starting from the point (7 =
Ap, E=E&_,+ AE). An anslogous pro-

cedure is carried out for the quadrant of

locity angle

velocity angle —7< ¢<—72/2 and —rx/2
< ¢ <0 starting from the point (7 = 7
—An, §=¢_o—A¢) and (n=47,
€= €& _,—AE), respectively.  After this
procedure is repeated for all discrete-ordinates

Vs for both £; and k;, the moments may



146 42T T2 AF A F A
be calculated by means of the quadrature for- each selection is

mula, Egqs. (15), with a proper integration (6 7C) )
method over the angle. The iterative proce- (6 1C,) max (20
d;re dxs s-bopped when the r_elatn{e change {n For the calculation of molecular interaction,
the density _baetween two iterative steps is the variable hard sphere (VHS) model
less than 107 for all spatial grid points. As  geveloped by Bird [10] is employed. In the

a proper quadrature formula, the modified
Gauss-Hermite half range quadrature for
integrals of the form [7,8]

[evvamar= 2 pavy) a9

is used. The exponent j and the order of
the quadrature N are chosen to be 1 and 186,
respectively. Simpson’s 3/8th rule with A¢
=4.5° is used for the integration over the
angle ¢. The (7,é&) plane was covered

by 101x51 grid points for the stagnation
chamber upstream of the nozzle inlet, 50X 201

101 x51
for the plume, and 5151 for the backflow
region.

for the region inside of the nozzle,

The exponent of the viscosity—-
temperature relation in Eq. (6), ¢, was that
for Argon, 0.811. The surface temperature
was chosen to be the same as the stagnation
chamber temperature, 7T,.

4. Direct Simulation Monte—Carlo
Method

In the present study, the no time count
(NTC) method developed by Bird [9] is used
as a sampling technique. In the NTC
method, the number of pairs to be sampled,
N, is given by

Ni=Nyn(o 7 C,)pux A2 19
where N,, is the number of simulated mole-

cules in the cell, ¢ r is the collision cross-

section, C, is the relative speed between

colliding molecules, and Af is the discrete

time interval. The collision probability for

VHS model, the collision cross-section is
given by
o 7% C;2° 1

where o is related to the viscosity-temper
ature exponent, S, by
s=w +0.5 (22)
In DSMC calculations, the best results are
obtained when a large number of simulated
molecules are used, when the cell size is as
small in comparison with the mean free path,
and when the discrete time step is as small
in comparison with the mean collision time.
In most of the calculations, the cell size, Ax
and Ay, was less than 1.0 and the time step
was less than 0.25. Here the cell size is
measured in units of the local mean free path
and A7 in units of the mean collision time
based on the stagnation chamber condition.
The average number of molecules per cell
was Kkept around 20 except for some cells in
the backflow region where the normalized
density decreases more than 5 orders of ma-
gnitude.  Sampling interval was 5 A?¢ and
average sample size per cell was around
100,000. The exponent of the VHS model,

w, was that for Argon, 0.311.

5. Results and Discussion

For the comparison of two methods the
following geometric configurations are used in

the calculations: /j=1, /,=3, ;=10.2, [;=0.2,

and & =4+20°. The Knudsen number was
chosen to be K,=0.01.

A comparison of the solutions inside the
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Fig. 2 Comparison of density contours,
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Fig. 3 Comparison of temperature contours,
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nozzle, in the plime, and in the backflow
region is made in Figs. 2 and 3, respectively,
in which density and temperature contours
are shown. The FDDO solutions are in the
upper portion of the figures, and the DSMC
solutions are in the lower portion. The den-
sity contours obtained by the two methods

show good agreement in the entire flow do-
main. In some parts of the backflow region,
however, a severe scattering of data appeared
in the results of the DSMC method if the

normalized density was lower than 1074

which made it meaningless to compare the
results. Hence,
plotted only up to 10 ~4 A logarithmic scale
is used for the density contour. The temper-

ature contours show good agreement inside
the nozzle and near the exit plane.

the density contours are

A severe
scattering of data appeared in the temperature
obtained by the DSMC method for a normal-

ized density lower than 107°, which is the
entire portion of the backflow region.
the temperature contours in the backflow re-
gion are not shown. A considerably greater
computational effort will be required to re-
solve the scattering in the backflow region,
which is beyond the scope of the present
study.

In Fig. 4, density and temperature distri-
butions are compared along the centerline of
The density and temperature dis-

Hence,

the nozzle.
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Fig. 4 Comparison of density and temper-
ature distributions along the center-
line of the nozzle.



148 AE

B ALF A T4 A

I
o°
o
™ o]
Z 08 0
> (o}
S density
L= n/n,
5 06 - temperature
g TrT,
3
g
= 041
3
E
302k
20 —— FDDO
r [0} DSMC
0 2 [ I | " | L | I
0 0.2 0.4 0.6 0.8 1

Normalized variables

Fig. 5 Comparison of density and temper-
ature distributions at the exit plane
of the nozzle.
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Fig. 6 Comparison of flow angle at the exit
plane of the nozzle.

tributions obtained by the two methods show
very good agreement. In the plume, however,
the temperature predicted by the FDDO
method is slightly higher than that by the
DSMC method. The FDDO method thus
predicts a slightly slower expansion of the
flow than does the DSMC method.

Figure 5 shows density and temperature

distributions at the exit plane of the nozzle.
The results from both methods show good
agreement except for the temperature distri-
bution near the wall where the DSMC me-
thod shows a slightly higher temperature than
the FDDO method. In Fig. 6, the flow angle
obtained by the two methods at the exit
plane of the nozzle are compared. The max-
imum flow angle at the nozzle exit plane is

about 25°%, which exceeds the diverging angle

of the nozzle wall 20°. It is interesting to
note that the portion of the exit plane where
the flow angle exceeds the divergence angle
of the nozzle is about 20% of the exit-plane
area and occurs near the wall. This portion
of the flow significantly contributes to the
back-scattering of the plume to the backflow
region.

6. Conclusions

Two different approaches, the finite-dif
ference method coupled with the discrete-
ordinate method (FDDO), and the direct
simulation Monte-Carlo (DSMC)  method,
were used in the analysis of the flow of a
rarefied gas through a two-dimensional
nozzle. The FDDO method has been shown
to be a practical method for treating the flow
of rarefied gases through a nozzle and ex-
panding into a low-density background. The
results of the FDDO and DSMC methods
show good agreement for such flow variables
as density, velocity, and temperature inside
the nozzle and in the plume.
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