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Incompressible Laminar Entry Flows in a Square Duct of
Strong Curvature Using an Implicit SMAC Scheme
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1. Introduction

Flows in curved ducts are encountered
in a wide range of practical engineer-
ing applications such as blade passage,
intake or draft tube of turbomachinery,
piping systems of plants, cooling coils of
heat exchangers and biomechanical cir-
cuits. As compared with simple cross-
section of the ducts, such flows induce
complex secondary flows within the duct
on account of existence of the curvature
along the streamwise. These flows can re-
sult in large redistributions of the stream-
wise velocity, a pressure loss and increased
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heat transfer at the duct wall. From the
engineering point of view, it is an impor-
tant task to understand those flows accu-
rately. As a example, draft tube in hy-
draulic turbine, which has a role to reduce
the velocity and increase the pressure of
the water discharging, could have an im-
portant effect on the efficiency of the tur-
bine, so better understanding of the flow
behavior in the tube is highly required.
For these reasons, many studies to ana-
lyze the curved duct flows have been made
by experiments[1-2] and computations|3-
4]. In many types of curved ducts, the
90-degree bended square duct is the most
proper fluid dynamic devices[5] to under-
stand complex flow phenomena in a three-
dimensional (3-D) curved passage.
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Recently as technologies advance, the
gravity of studying numerical schemes to
simulate practical flows is high because
better performance, compact and highly
efficient designs are required in modern
flow devices. Among numerical methods,
the most widely used ones for computing
the incompressible flow are the MAC type
schemes and the pseudo-compressibility
methods. The MAC type schemes[6-8]
are an epoch-making method in which
the continuity condition is satisfied iden-
tically and the spurious error, that is
checkerboard like oscillation of pressure,
is removed completely by introducing a
staggered grid. On the other hand, the
pseudo-compressibility method[9-10] has
been used only for the steady state flow.
Because, while the incompressible flow
has an elliptic character, the pseudo-
compressibility method based on the com-
pressible flow scheme has a hyperbolic
character, so the disturbance spreads just
inside a limited region. However, recently
this method has been extended to the un-
steady flow by Kwak et al.[11]. The au-
thors have already proposed some implicit
SMAC schemes and applied to laminar
and turbulent flow problems[12-13]. In
these schemes, a staggered grid in curvilin-
ear coordinates is applied, and the elliptic
equation of pressure is solved by using the
vectorized Tschebyscheff SLOR method.
Therefore, the elliptic character of incom-
pessible flow is satisfied well.

The purpose of this paper is to develop
an efficient computer code for solving the
passage flow of turbomachinery with very
complicated flow fields, and understand
complex flow phenomena in a strongly
curved duct which is to be basic physical
elements associated with above mentioned
practical fluid devices. In this paper, a
numerical study of laminar flow phenom-
ena in a 90-degree bend is performed us-

ing implicit SMAC scheme[12]. In the
present study, the geometry of the curved
area is the same as that of Humphrey et
al.[2]. Detailed observations of the sec-
ondary flows and the redistribution of the
streamwise velocity obtained at the dif-
ferent entry flows and different up- and
downstream boundary positions are made.
Also, comparisons of present predicted re-
sults with available experimental data are
provided.

2. Fundamental Equations

2.1 Fundamental Equations in
Curvilinear Coordinates
The fundamental equations of the in-
compressible flow are the Navier-Stokes
equations and the continuity equation ex-
pressed in the conservative vector forms

)
%+V-uu=—Vp+UV2u (1)
V.u=0 (2)

where «, p and v are the velocity, static
pressure and kinematic viscosity, respec-
tively. Here these equations are extended
to the 3-D curvilinear coordinates and ap-
plied to the implicit formulation in order
to improve the computational efficiency.

Introducing the contravariant velocities
U, and the contravariant vorticities Z;,
the 3-D incompressible momentum equa-
tions of the volume fluxes JU, in gen-
eral curvilinear coordinates can be derived
from Eqs.(1) and (2) as follows:

Z%(JU’) +L(JUpp) =0 (£=1,2,3)(3)

0
—(JU;) =0 4
s 4)
where,
7] d
L(JUy,p) = 65,(JUiUl) - JUiu - 'a—é_v'fe
) ap 3 3
+gh’6—€: + VGzi,'a—&h;'ka; (5)
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Gi; = Jgj, and ¢; is the permuta-
tion tensor. The Jacobian J and the
metrics g;; and h;; of the transforma-
tion from Cartesian coordinates z; to gen-
eral curvilinear coordinates ¢; are J =
3(m, Y, z)/a(€7n7€)7 gi; = VEZ : Vg] and
hij = Oxi/0&; -0z [OE;, respectively. And
the relations between the physical velocity
u; in z; space and the contravariant veloc-
ity U; in & space are U; = (0€;/0z;)u;
and u; = (9Jz;/0¢;)U; using the sum-
mation convention. Similarly the con-
travariant vorticity Z; and physical vor-
ticity (; are defined as Z; = (0&/0z;)(;
and (;=Vxu=(0z;/0¢;)Z;

In Eq.(3), the momentum equations of
volume fluxes JU; correspond to the equa-
tions of flows through the each cell sides.
Therefore, for the usual body fitted curvi-
linear coordinate grid, the boundary con-
dition can bhe imposed very easily. In ad-
dition, while the contravariant velocity U;
depends on the grid, the volume fluxes
JU; are independent on the grid spacing
in the &;-direction because JU, for exam-
ple, as a £ component written as JU =
Ju-VE&=wu-z, X x;. is meaning the flow
rate through £=const cell side divided by
the cell side area.

2.2 SMAC Schemes

The dependent variables of fundamental
equations are u and p. and the advanced
value of w can he determined from the
Cauchy problem of Eq.(1). However, the
remaining variable p can not determined
from the remaining Eq.(2). Taking the di-
vergence of Eq.(1) and using Eq.(2), we
can derive the Poisson equation of pres-
sure V%p = =V - (V - wu). Therefore, the
values of p is determined from the bound-
ary value problem. However, the value of
u determined in this way does not gener-
ally satisfy the continuity condition (2).
The MAC scheme[6] and the simplified

MAC (SMAC) scheme(7] are those which
completely solved this difficulty.

Here, the fundamental equations of the
SMAC scheme for Egs.(3) and (4) can be
written as

JU; = JU} — AtL(JUq, p)" (6)

0 1 0
AR U B
n+l __ * ~ %
JU@ = JU; Atgha&_ (8)
T=p"+¢ (9)

where ¢ and the asterisk * denotes the
pressure correction and the intermediate
time level, respectively. In this scheme,
the Navier-Stokes equations Eq.(3) is di-
vided into Egs.(6) and (8) applying the
time-splitting method in which the fully
implicit scheme is used to the pressure
term. The Poisson equation (7) of the
pressure increment ¢ is derived by taking
a divergence of Eq.(8) and using the conti-
nuity condition %(JU )**1 = 0. There-
1

fore, the advanced value JU!*! calculated
in this way is satisfied with the continuity
condition (4). At each cell side centers,
the volume flux JU; must be defined in
stead of the physical velocity components
of original MAC scheme[6]. And since the
principal part of these difference equations
of pressure is expressed in compact form,
no spurious error occurs in the computa-
tion.

3. Numerical Methods

3.1 Implicit SMAC Scheme

Now, Eq.(6) is extend to an im-
plicit form by applying the delta-form
approximate-factorization method[14] and
partially including the viscous term in the
left hand side. Therefore, the momentun
equations of the present implicit SMAC
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scheme are as follows[12].

w05 o B
[1 + At(%V — l/a—gh;gg-a—ghu)] .
o iy \
[1 + At(a—C-W el I/a—chzz b’éhll)]A‘lU
= RHST (10)
0 8 0
1+ At(a—gU” £h33 ha2)] -
g . 8. . @
[1 + At(éjv - V-a?h33h;-(%)] .
1+ At(&W - V%hu-a—chzz)]AJV
= RHST (11)
0 d; 0
1+ At(éZUn (%hzz has)]
3} 0 ; 6
1+ At(a—V" 6 Sy 77h33)]
6 6 0 .
[]. + At(ac I/a—('huhgg-a—g)]AJW
= RHS? (12)
where, 9
RHS, = —At[a&(JU Ue) = TUsu 5o VE

Op 0
+G0i 5 a& + Veyis 77 86 (thJZk)] (13)
JU; = JUP + AJU},

JZ; = €y 385 (h xJU) (7=1,2,3),

and h;j=h;;/J. This delta formed implicit
SMAC scheme satisfies a diagonally dom-
inant condition with the first order up-
stream difference scheme and is the TVD
stable. Also, this implicit SMAC scheme
is suitable for vector or vector parallel
machine as compared with the HSMAC
scheme[15] and the SIMPLE scheme[16]
developed toward scalar machine. In ad-
dition, JU; is obtained explicitly by the
HSMAC scheme and implicitly by the
present implicit SMAC scheme with some

direct method of systems of linear equa-
tion. In the SIMPLE scheme, however,
JU; is solved implicitly by some itera-
tion method so that when the second- or
higher-order upstream difference scheme
is taken, the linear equation no longer sat-
isfies the diagonally dominant condition.
Therefore, the under-relaxation is neces-
sary and the number of iteration is in-
creased. Hence, when vector machine is
used, the implicit SMAC scheme applied
vectorized Tschebyscheff SLOR method to
pressure equation is to be more efficient
scheme[17] than the HSMAC scheme or
the SIMPLE scheme.

Each equation of Eqs.(10)-(12) can be
solved by dividing them into three steps,
and each step is the problem solving the
simultaneous linear equations with tri-
diagonal matrix by the Gaussian elim-
ination. And the simultaneous linear
equations (7) are here solved by the
Tschebyscheff SLOR method alternating
sweep directions like the ADI method,
which is suitable in supercomputing.

3.2 TVD Upwind-Difference
Scheme

The second-order central-difference is
basically used for the space derivatives.
However, for convection term on the left
hand side of Egs.(10)-(12), the first-order
upstream-difference scheme is used to re-
duce the computational efforts and to ac-
celerate the convergency, and for the right
hand side, the TVD upwind difference
scheme which has remarkable stability in
the 3-D computation is applied. Here the
TVD monotone scheme is explained using
the simple one-dimensional scalar equa-
tion as

ou  0f(a,u)
ot + oz 0 (14)
where ¢ = 9f/0u is the characteristic

speed. The finite-difference equation of
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Eq.(14) can be generally written in the
conservation form

uPt 4 M(figay2 — fimap)mt!
= ul = M1 = 0)(fip1yz ~ ficapa)™ (15)

where A = At/Az, 0 < 6 < 1, and f is
the numerical flux function.

The TVD scheme is expressed as a
sum of the first-order upstream-difference
scheme and correction terms, and then the
correction term is modified locally by a
limiter in order to stabilize the solution.
The numerical flux of the Chakravarthy-
Osher TVD upwind difference scheme[18]
becomes

fivipo = (fi + fix1))2
_(sz':-l/l - D ,‘;1/2)/2

-5 .
+ —Z—nnnmod[l)ff_l/.z‘, bDf,Tg/-z]

+

I+n .
2 nunmod[Df:'H/z, bDfl.tl/z]

I-x | - -
- Tnunmod [Dfi+3/zv bDfi+1/2]

I+K . _ - '
_Txnmmod[DfiH/.z, bDfi+3/2] (16)

where, D%

_ ot _ + _
12 T Gp1pDUjiy 65 =

X : Stream direction
Y : Span direction
7 : Radial direction

(a £ |a])/2, Aujyija=ujp1 — uj, ~1 <
Kk < 1, and here the minmod function
of minmod(z,y] = sign(z)max[0, min{|z|,
ysign(z)}] which controls the slop of flux
was used 1 < b < (3 - «)/(1 — k). Partic-
ularly, if K = 1/3, then Eq.(16) becomes
the third-order accurate TVD upstream-
difference scheme. Also, as b is larger, the
region where the limiter function acts be-
comes narrower.

4. Numerical Results

Some cases of an incompressible de-
veloping and fully developed entry flow
through a square duct with 90 degree bend
are computed by using the present im-
plicit SMAC scheme. The cross section of
the bend is square throughout the bend[2].
The Reynolds number based on the inlet
mean velocity (Ug) and the entrance width
(H)1s 790. The mean radius of the bend is
2.3. Figure 1 illustrates the computational
geometry, nomenclature, coordinate sys-
tem, and grid near the bend.

For the boundary conditions, no-slip
condition and the Neumann condition for
the pressure were implemented on the
solid wall boundary. The inlet and outlet

Fig.l Computational geometry and grid near the bend region
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Table 1 Boundary conditions and entrance and exit boundary locations

Boundary location Boundary condition Grid points
Xy (H) | Xp (H) Inlet u Outlet p | (XxYxZ)
Case I 5 5 Fully developed | Neumann | 95x41x41
Case 11 7.5 7.5 flow[19] Dirichlet | 107x41x41
Case III 7.5 5 Dirichlet | 101x41x41
Case IV 7.5 7.5 Uniform flow condition | 107x41x41
Case V 9 5 107x41x41
2.5 T L) LS L ﬁ L L 2.5 T T LI Ll ' T T T 1
—— Present: 60°
® Mecasured: 60°
2} ~J - 2+ —— Present: 90° -
60 r PY O  Measurcd: 90°
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o / \O 4 \
g b \o g ...
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./ \ N
| —— Present: 0° o \o oXu %
i d: O .
osfl [ 8 peset ae®
‘ O Measured: 30° \ o
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Fig.2 Streamwise velocity profiles at the X-Z symmetry plane (Case D)

boundary conditions, the entrance and
exit boundary locations and used grid
points for the some computational cases
of flow field are shown in Table 1. In the
present computation, the control parame-
ter b=4 and k=1/3 are used in Eq.(16).

In Fig.1 and Table 1, Xy and Xp are
represent the length of inlet and outlet
boundaries from the bend, respectively.
For all cases, the streamwise grid spacing
at the bend area is 2.5°.

In the present study, the two results
of the fully developed entry flow cases of
Case I and II were accorded with each
other except the convergency rate of the
Case I was somewhat increased. For the
developing entry flow cases of the Case III

and IV, both results are also the same in
spite of the different exit boundary loca-
tions. However, the Case V was closer to
experimental data[5] than the results of
the Case III and IV as it will he shown
later in Figs 6 and 7. The discrepancy of
the results among the latter three cases is
small, but it seems to be due to the ef-
fect of the inlet flow conditions which is
related to thickness of the boundary layer
at entrance of the bend. Such effect was
also observed by Govindan et al.[20].
Figure 2 shows the streamwise velocity
profiles by Case I compared with experi-
ments[2] at the several streamwise stations
of the X-Z symmetry plane. The com-
parison is quite satisfactory except near
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Fig.3 Computational results of (a) streamwise velocity contours and
(b) secondary velocity vectors on the several cross-section plane (Case I)

Fig.4 Computational results of (a) streamwise velocity contours and
(b) secondary velocity vectors on the several cross-section plane (Case V)

the inner wall of the rear part of the bend.
These discrepancies, specifically at 60°
plane, are appeared in other papers(3,21],
but in this computation, it is considered
that the forming of the second maximum
in the velocity occuring further upstream
(near the 6 of 50°) than that of experi-
ments causes the discrepancy at the latter
part of the bend. However, the peak veloc-
ity near the outside is very well predicted.
Figures 3 and 4 show the computational
results of streamwise velocity magnitude
contours and secondary velocity vectors at
several streamwise cross sections for the

fully developed and developing entry flow
case, respectively. It shows that the center
of the high velocity flow moves to outer
wall with the angle of § (Fig.3(a) and
4(a)), which is due to the secondary flow
formed by the curvature. Near the end of
the bend, this center is shifted to both side
corners of the outer wall, and the second
high velocity region is formed near the in-
ner wall. Recirculation zone exists at both
corners of outside wall near 30° plane in
Fig.3. On the other hand, the secondary
vortices arve formed at the both sides from
the center of the duct, and they are seen
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Fig.5 Streamwise velocity profiles: —, Case [; O, Experiments[2]
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Fig.6 Streamwise velocity profiles: —, Case III; ---, Case V; O, Experiments{5]

to become stronger and move toward the
inside wall. And then, this flow develops
to a very complicated secondary flow hav-
ing three different vortices at 90° plane
in Fig.3. These vortices are also observed
near Xy =0.25 in the developing flow case.

Figures 5 and 6 show a comparison of
streamwise velocity profiles along the Y

lines with experiments[2,5]. The agree-
ment between predictions and measure-
ments is quite good at most locations.
And the Case V predicts better than Case
ITT and IV in Fig.6. Figure 7 compares the
predicted secondary velocity w with ex-
periments[5] in Case V. The present com-
putations well capture the peak value of w
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Fig.8 Streamwise velocity vectors (Case V)

and all the qualitative features of the flow.
Figures 8(a)-(c) show streamwise velocity
vectors on the symmetry plane (Y=0.5),
on the left hand side wall (Y=0.99) and
outer wall (Z=0.01), and on the inner
wall (Z=0.99) and the right hand side
wall (Y=0.01). Redistributions of the ve-
locity along the streamwise direction and

the recirculation zone which is formed at
both side corners of the outside wall near
5°~40° are seen in this figure. The second
maximuim velocity occurs near 50°. And
the double peak of the velocity profile ex-
ists near inner wall of the bend region.
Figures 9(a)-(c) show the streamlines
along the bend and the vorticity magni-
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Fig.9 Numerical results of (a) streamlines, (b) oil flow patterns and
(c) vorticity magnitude contours (Case V)
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Fig.10 Numerical results of (a) pressure contours and
(b) surface pressure distributions (Case V)

tude contours at several streamwise cross 10 shows the numerical results of pressure

sections by the 3-D computer graphics. contours and the surface pressure distribu-
The vortex pair originated at beginning  tion. In the bended area, relatively high
of the bend is observed. Also, the separa- pressure are distributed near the outside

tion region can be seen in Fig.9(b) of the  wall because of the centrifugal forces. At
oil flow pattern on the inside wall. Figure downstream from the bend, the pressure is
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recovered to the uniform value across the
cross-section.

5. Conclusions

An incompressible developing and fully
developed entry flow through a square
duct with a 90 degree bend is studied
numerically by using an efficient implicit
SMAC scheme, which was developed pre-
viously for solving the 3-D Navier-Stokes
equations in general curvilinear coordi-
nates. In the present computation, 3-D
complex flow phenomena including strong
secondary motion in the curved duct are
simulated well, so that it is easy to un-
derstand that kind of flow behavior and
makes possible to take a sufficient infor-
mation required for efficient designs of
fluid devices. Also, a good agreement with
experimental data is obtained. It indi-
cates that the present scheme is a high
reliability for computing the square duct
or similar duct with a strong curvature to
be basic physical elements associated with
turbomachinery.
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