A Numerical Speech Recognition by Parameters Estimated from the Data on the Estimated Plane and a Neural Network

추정평면에서 평가한 데이터와 인공신경망에 의한 숫자음 인식

  • Choi, Il-Hong (Department of Electronic Engineering Chin Ju Technical College) ;
  • Jang, Seung-Kwan (Industrial Technology Training Center, KAITECH) ;
  • Cha, Tae-Hoo (Industrial Technology Training Center, KAITECH) ;
  • Choi, Ung-Se (Industrial Technology Training Center, KAITECH) ;
  • Kim, Chang-Seok (Department of Electronic Engineering, Myong-Ji University)
  • 최일홍 (진주전문대학 전자과) ;
  • 장승관 (생산기술연구원 부설 산업기술교육센터) ;
  • 차태호 (생산기술연구원 부설 산업기술교육센터) ;
  • 최웅세 (생산기술연구원 부설 산업기술교육센터) ;
  • 김창석 (명지대학교 전자공학과)
  • Published : 1996.08.01

Abstract

This paper was proposed the recognition method by using parameters which was estimated from the data on the estimated plane and a neural network. After the LPC estimated in each frame algorithm was mapped to the estimated plane by the optimum feature mapping function, we estimated the C-LPC and the maximum and minimum value and 3 divided power from the mapping data on the estimated plane. As a result of the experiment of the speech recognition that those parameters were applied to the input of a neural network, it was found that those parameters estimated from the estimated plane have the features of the original speech for a change in the time scale and that the recongnition rate by the proposed methods was 96.3 percent.

본 논문은 추정평면의 데이터로부터 특징파라미터의 평가와 인공신경망에 의한 음성인식방법을 제안한다. 각 프레임에서 평가한 LPC는 매핑함수를 이용하여 추정평면으로 매핑시켰으며, 본 논문에서는 이 추정평면의 데이터로부터 C-LPC, 최대값, 최소값, 3등분할 파워 특징값을 평가하였다. 추정평면에서 평가한 특징 파라미터는 인공신경망에 입력한 음성인식 실험으로부터 원 음성신호의 시간변화에 따른 특징을 포함하고 있음을 확인하였고, 제안한 방법에 의한 인식으로부터 인식율이 약 96.3%이었다.

Keywords