Conformation of Antiimflammatory Fenamates

소염진통성 페나메이트 유도체들의 형태분석

  • Chung, Uoo-Tae (College of Pharmacy, Chungbuk National University) ;
  • Kang, Kee-Long (College of Pharmacy, Chungbuk National University) ;
  • Lee, Sung-Hee (Department of Environmental Industry, Cheongju National Junior College)
  • Published : 1996.12.01

Abstract

Most stable conformers of some antiinflammatory fenamates were obtained by conformational free energy change calculations. Conformational energies for the molecules as unhydrate d state were estimated first, and those as hydrated state were calculated then to simulate the molecules in aqueous solution using a hydration shell model. The initial geometries of the molecules were obtained either from X-ray crystallographic data or from homologous molecular fragments. The bond lengths and angles were not varied, but all the torsion angles were varied step by step during the conformational free energy surface searching. The results show that there are several feasible conformations for a compound. And the molecules are somewhat stabilized by hydration (-${\delta}G_{hyd}{\cong}$13 to 16kcal/mole), but the conformations were not changed significantly by the hydration itself. There seems to be a strong tendency of intramolecular hydrogen bonding between imino hydrogen and carboxyl oxygen of the compounds. As a result, the carboxyl group cannot be rotated freely, and the rotation of the second aromatic ring is the main reason for the conformational variations of the compounds. The ECEPP force fields via the program CONBIO were used throughout this study.

Keywords

References

  1. The Pharmaceutical Basis of Therapeutics Gilman, A. G.;Goodman, L. S.;Rall, T. W.;Murad, F.
  2. Essentials of Medicinal Chemistry(2nd ed.) Korolkovas, A.
  3. Burger's Medicinal Chemistry. Part Ⅲ(4th ed.) Wolff, M. E.
  4. Pharmacol. Rev. v.26 Drugs which inhibit prostaglandin biosynthesis Flower, R. J.
  5. J. Med. Chem. v.17 Structure-activity relationships of fenamic acids Terada, H.;Muraoka, S.;Fujita, T.
  6. Arzneim-Forsch(Drug Res.) v.25 no.10 Acidic antiinflammatory agents-correlations of some physical, pharmacological and clinical data Lombardino, J. G.;Otterness, I. G.;Wiseman, E. H.
  7. Acta Cryst. v.B44 Structural studies of analgesics & their interactions. ⅩⅡ. Structure and interactions of antiinflammatory fenamates. A concerted crystallographic and theoretical conformational study Dhanaraj, V.;Vijayan, M.
  8. J. Pharm. Sci. v.74 Conformational analysis of some α-phenylpropionic acids with anti-inflammatory activity Smeyers, Y. G.;Cuellare-Rodriguez, S.;Galvez-Ruano, E.;Arias-Perez, M. S.
  9. J. Med. Chem. v.20 A model for the prostaglandin synthetase cycloxygenation site and its inhibition by antiinflammatory arylacetic acids Gund, P.;Shen, T. Y.
  10. Nature v.367 The X-ray crystal structure of the membrane protein prostaglandin H₂synthase-1 Picot, D.;Loll, P. J.;Gravito, R. M.
  11. Acta Cryst. v.B38 Structure of new crystal form of 2-{[3-(Trifluoromethyl)phenyl]amino}benzoic acid (Flufenamic acid) Krishna Murthy, H. M.;Bhat, T. N.;Vijayan, M.
  12. Acta Cryst. v.B35 2-{[3-(Trifluoromethyl)phenyl]amino}-3-pyridinecar-boxylic acid(Niflumic acid) Krishna Murthy, H. M.;Vijayan, M.
  13. Acta Cryst. v.B37 Structural studies of analgesics and their interactions. Ⅷ. Rotational isomerism and disorder in the crystal structure of meclofenamic acid Krishna Murthy, H. M.;Vijayan, M.
  14. The Chemical Society, Special Publication no.11;18 Table of Interatomic Distances and Configuration in Molecules and Ions Shutton, L. E.
  15. J. Phys. Chem. v.94 Determination of net atomic charges using a modified partial equalization of orbital electronegativity method. 1. Application to neutral molecules as models for polypeptides No, K. T.;Grant, J. A.;Scheraga, H. A.
  16. J. Phys. Chem. v.94 Determination of net atomic charges using a modified partial equalization of orbital electronegativity method. 2. Application to ionic and aromatic molecules as models for polypeptides No, K. T.;Grant, J. A.;John, M. S.;Scheraga, H. A.
  17. J. Comput. Chem. v.14 Determination of net atomic charges using a modified partial equlization of orbital electronegativity method. Ⅲ. Application to halogenated and aromatic molecules Park, J. M.;No, K. T.;John, M. S.;Scheraga, H. A.
  18. J .Phys. Chem. v.96 Energy parameters in polypeptide. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides Nemethy, G.;Gibson, K. D.;Palmer, K. A.;Yoon, C. N.;Paterlini, G.;Zagari, A.;Rumsey, S.;Scheraga, H. A.
  19. J. Phys. Chem. v.91 Free energies of hydration of solute molecules. 1. Improvement of the hydration shell model by exact computations of overlapping volumes Kang, Y. K.;Nemethy, G.;Scheraga, H. A.
  20. erratum v.92 Free energies of hydration of solute molecules. 1. Improvement of the hydration shell model by exact computations of overlapping volumes Kang, Y. K.;Nemethy, G.;Scheraga, H. A.
  21. J. Phys. Chem. v.91 Free energies of hydration of solute molecules. 2. Application of the hydration shell model to nonionic organic molecules Kang, Y. K.;Nemethy, G.;Scheraga, H. A.
  22. erratum v.91 Free energies of hydration of solute molecules. 2. Application of the hydration shell model to nonionic organic molecules Kang, Y. K.;Nemethy, G.;Scheraga, H. A.
  23. J. Phys. Chem. v.91 Free energies of hydration of solute molecules. 3. Application of the hydration shell model to charged organic molecules Kang, Y. K.;Nemethy, G.;Scheraga, H. A.
  24. J. Phys. Chem. v.92 Free energies of hydration of solute molecules. 4. Revised treatment of the hydration shell model Kang, Y. K;Gibson, K. D.;Nemethy, G.;Scheraga, H. A.
  25. ACM Trans. Math. Software v.9 An adaptive nonlinear least-squares algolithm Gay, D. M.
  26. Handbook of Mathematical Functions Abramowitz, M.;Stegun, I. A.
  27. Macromolecules v.10 Conformational analysis of the twenty naturally occuring amino acid residues using ECEPP Zimmerman, S. S.;Pottle, M. S.;Nemethy, G.;Scheraga, H. A.
  28. KRICT Research Report Conformational Analysis Program for Biological Molecules(CONBIO) Kang, Y. K.
  29. Yakhak Hoeji v.33 Conformation and antibacterial activity on Staphylococcus aureus of some benzenesulfonyl analogues Kim, B. S.;Lee, S. H.;Chung, U. T.;Kang, Y. K.
  30. J. Med. Chem. v.27 Functional group contributions to drug-receptor interactions Andrews, P. R.;Craik, D. J.;Martin, J. L.
  31. J. Phys. Chem. v.79 Energy parameters in polypeptides. Ⅶ. Geometric parameters, partial atomic charge, nonbonded interactions, hydrogen bond interactions and intrinsic torsional potentials fot the naturally occuring amino acids Momany, F. A.;McGuire, R. F.;Burgess, A. W.;Scheraga, H. A.