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Neuroreceptor Imaging in Movement Disorders
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Introduction on Movement Disorders

The basal ganglia serve as a major input to
the pyramidal tract motor system. The long used
term “extrapyramidal” is synonymous with the
basal ganglia system. Extrapyramidal disorders
are associated with abnormalities of the basal
ganglia and are characteristically manifested by a
combination of abnormal involuntary movements,
alterations in muscle tone, and disturbances in
postural stability. Included in this ctegory are the
syndromes of parkinsonism, chorea, tremor, athe-
tosis, dystonia, and hemiballism, collectively re-
ferred to as movement disorders. It also encom-
passes the syndromes of myoclonus and tics, that
probably are caused by lesion sites other than
basal ganglia. In general, diagnosis of the parti-
cular abnormal involuntary movement depends
more on careful clinical obserbation than on
laboratory study. Nuclei of the basal ganglia are
situated deep in the brain and are difficult to
examine. However, recent advancement of radio-
tracer technologies make it possible to measure
the biochemistry and physiology of the basal
ganglia.

The basal ganglia comprise five paired nuclei:
caudate nucleus, putamen, globus pallidus, sub-
stantia nigra, and subthalamic nucleus. The first
three lie deep in the cerebral hemispheres and
collectively referred as corpus striatum. The
subthalamic nucleus lie in the diencephalon, and
the substantia nigra is located in the midbrain.

Although separated by the internal capsule, the

caudate and putamen are similar histologically,
chemically, and physiologically, and are consi-
dered collectively as neostriatum or striatum. The
striatum serves as the main site of neural input
into the basal ganglia, receiving afferents from all
parts of the cerebral cortex and thalamus. The
striatum interacts mainly with pallidus and sub-
stantia nigra back and forth with efferents and
afferents neural messages. The pallidus and sub-
stantia nigra are also separated by the internal
capsules, but are similar microscopically, chemi-
cally, and physiologically. These two serve as the
major site of neural output from the basal
ganglia, with the principal neural pathway going
to the thalamus and thense to the premotor
cortex. The premotor cortex is one source of the
corticospinal (pyramidal) tract, the major cortical
efferent pathway controlling motor function.

The substantia nigra modulate the neostriatum
by receiving afferents from, and sending efferents
back to it. In an analogous fashion, the subtha-
lamic nucleus can be considered to function as a
modulator of the pallidus and probably regulates
the basal ganglia output to the thalamus. The
nigrostriatal pathway contains dopamine and may
inhibit the striatum. The other inputs to the
striatum, thalamostriatal and glutamate~containing
corticostriatal pathways, are excitatory. The
GABA-containing efferents from the striatum to
the pallidum and substantia nigra are inhibitory.
Lesions of the substantia nigra with resulting
loss of dopamine in the striatum result in the
bradykinetic syndrome of parkinsonism. Drugs

that deplete dopamine (reserpine), and drugs that
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block striatal dopamine receptors (phenothiazine)
can also cause parkinsonism. By contrast, exces-
sive dopamine activity (levodopa overdose) pro-
duces the hyperkinetic state of chorea. A lesion
of the subthalamic nucleus produces contralateral
hemiballism (disinhibition). Lesions in the corpus
striatum produce inconsistent patterns of dyski-
nesias, depending on sites and mode of involve-
ment. Trauma and vascular lesions of striatum
can cause athetosis and dystonia, whereas chorea
accompanies degenerative loss of neurons in

striatum (Huntingtons).

Neuroreceptor Imaging Modalities

Planar brain scan perhaps has no place in
neuroreceptor imaging since it deals with deep
seated, relatively small functional regions or
units. Positron emission tomography(PET) is the
most ideal mode as it has superior spatial
resolution as well as capabilities of quantitation
and attenuation correction. Most of all, PET has
powerful advantage of abundantly variable posi-
tron tracers. PET has been utilized in this field
since early ‘80s but its availablity is severely
restricted due to the high cost. During the past
few years, the remarkable advancement in multi-
detector SPECT cameras along with development
of excellent quality SPECT tracers has opened a
"new era of brain SPECT” and it is spreading
widely throghout the world.

Radiopharmaceuticals of Nigrostriatal

Dopamine Pathway

Genral neuronal activity within the basal gan-
glia can be assessed by PET using F-18-
flourodeoxyglucose(FDG), O-15, and O-15-water,
but more specific chemical assessment is possible
by neuroreceptor binding tracers for both PET
and SPECT. Since its first suggestion by Eckel-

man et al” as a potential radiopharmaceuticals in
1979, receptor binding radiopharmaceuticals, parti-
cularly as central nervous system receptor
imaging agents, have made significant progress.
The nigrostriatal pathway extends from the pars
compacta of the substantia nigra to the caudate
and putamen nuclei of the striatum. The dopami-
nergic neuron synthesizes dopamine at the nerve
terminal. In response to the propagation of axonal
action potentials, dopamine is released from
vesicles of the nerve terminal into the synaptic
cleft. The dopamine that is not bound by
postsynaptic dopamine receptors is taken up back
into the presynaptic nerve terminal for storage in
vesicles. The reuptake process can be examined
with several radiotrcers. Included are C-11-
nomofensine and C-11-WIN 35,428 for PET, and
1-123- B -CIT and I-123-IPT for SPECT.

A large number of PET and SPECT receptor
imaging agents have been developed. Most of the
earlier works of receptor imaging were done with
PET systemz’ »

SPECT technology and development of new

With recent advancement of

SPECT receptor agents, SPECT receptor imaging
is rapidly growing and will replicate many of the
PET studies*®™®. Among these radiopharmaceu-
ticals, dopamine receptor imaging agents have
been most extensively studied*® **?. The do-
paminergic system is important for human daily
function and it is the primary action site for
antiparkinsonian agents. Dopamine receptors can
be divided into several subtypes, D1-D5, on the
basis of genes that characerizes the coupling to
adenylate cyclase activity and the differences of
the action mechanism of agonists and anta-
gonistse). D2 and D1 receptors are most exten-
sively studied and multiple ligands have been

synthesized for them'®.
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Clinical Applications

Many movement disorders, such as Parkin-
son’s disease (PD), MPTP Toxicity, neuroacan-
thosis, multiple system atrophy, progressive su-
pranuclear palsy, Huntington’s chorea, tardive
Gilles de la

Wilson's disease involve changes to dopamine

dyskinesia, Tourette syndrome,
receptor density in the brain. Therefore the
dopamine receptor imaging with PET and SPECT
in conjunction with appropriate radiopharmaceuti-
cals provides a useful noninvasive tool in the
evaluation of these various neurological disorders.

I shall discuss briefly on dopaminergic receptor
imaging in PD which has been most extensively
studied. In PD, uptake of F-18-flourodopa in the
striatum is reduced, more so in the putamen'®'?.
Similar findings were observed in MPTP toxi-
519 p1g fluorodopa PET has been useful in

the evaluation of human neurotransplantation of

city

fetal dopamine neurons in PD'. It can also
provide an index of the number of the functio-
ning nigrostriatal dopaminergic 19
patients with untreated PD, an increase in speci-
fic binding of C-1l-raclopride, a D2 antagonist,
is noted® !,

1-123 IBZM SPECT has recently been utilized
in D2 receptor imaging in PD and Wilson’'s
disease. A number of I-123 labeled dopamine
receptor agents such as IBF, £-CIT, IPT are
under the clinical trials®® and they appear to be
highly promising SPECT agents. IPT crosses the
blood brain barrier easily and selectively binds
the dopamine reuptake transporter. Its uptake in
the brain is relatively fast and produces very
high caudate to occipital ratios. IPT’s highly
advantageous imaging characteristics may make
it the radiopharmaceutical of choice for the
studies of the transporter.

PET will continue to play important role in

neurons . In ~

neuroreceptor imaging, while SPECT receptor
imaging will replicate many of PET roles in the

diagnosis of movement disorders.
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