카르보닐 신축진동 피수에 대한 용매 및 농도 효과: 디알킬 케톤

鄭英美·康在洙·南相臺·李武相* 경북대학교 사범대학 화학교육과 (1996, 3.8 접수)

Solvent and Concentration Effects on Carbonyl Stretching Frequencies: Dialkyl Ketones

Young Mee Jung, Jae Soo Kang, Sang Il Nam, and Mu Sang Lee*
Department of Chemistry Education, Kyungpook National University, Taegu 702-701, Korea
(Received March 8, 1996)

요 약. 수소결합, 유전효과 그리고 입체효과는 케톤의 카르보닐 신축진동을 결정하는 요인이 된다. 케톤의 카르보닐 신축진동은 다양한 용매에서 케톤의 농도변화에 영향을 받는다. 바극성용매에서 카르보닐 신축진동은 케론의 부피%가 증가함에 따라 낮은 파수로 이동하고 극성용매에서는 높은 파수로 이동한다. 용매 아세토 니트릴에서 카르보닐 신축진동은 dimethyl ketone을 제외하고 케톤의 부피%가 증가함에 따라 높은 파수로 이동한다. 용매의 극성이 증가할수록 카르보닐 신축진동은 낮은 파수로 이동하고 혼합용매 CHCl₃/CCl₄에서 부피%가 증가할수록 낮은 파수로 이동한다.

ABSTRACT. Hydrogen bonding, dielectric effects and steric effects are all factors which determine the carbonyl stretching frequency, $\nu C=0$ of ketones in solution. The $\nu C=0$ frequency of ketones is affected by change in concentration of ketones in various solvents. The $\nu C=0$ frequency shifts to lower frequency in nonpolar solvents and shifts to higher frequency in polar solvents with the increasing volume% of ketones. In acetonitrle, the $\nu C=0$ frequency shifts to higher frequency as the volume% of ketones is increased except dimethyl ketone. The $\nu C=0$ frequency shifts to lower frequency as the solvent system becomes increasingly polar or with the increasing extent of intermolecular hydrogen bonding, as in the case of increasing volume% chloroform in CHCl₂/CCl₄ solvent system.

서 론

수용액을 포함한 용액에서 레이저 라만 분광기를 이용한 용질/용매 상호작용에 대한 연구는 1.2 스펙트럼에 의한 구조 확인에 도움이 되며, 화학 반응에 대한 특정 용매계를 선택할 때 도움이 될 수 있다. Nyquist와 공동연구자들 3~7은 FT-IR 분광기를 이용한 케톤의 카르보닐 신축진동 파수 이동에 대한 용매효과 연구로, 수소결합, 유전효과, 그리고 입체효과모두 다 카르보닐기의 신축진동 파수 이동에 영향을 주는 요인이 된다고 밝혔다.

최근에 보고된 카르보닐 화합물의 용매효과 연구

는 주로 FT-IR 분광기에 외한 1~2 무게% 정도의 묽은 용액에 대한 것이다. 본 논문은 시료의 농도가 진할수록 스펙트럼을 얻기가 유리한 Raman 분광기 를 이용하여, 20 부피% 이상의 진한 농도 범위에서 카르보닐 신축진동 파수 이동에 영향을 미치는 용매 및 농도 효과에 관하여 더 많은 정보를 얻고자 수 행되었다.

실 험

Dimethyl ketone, diethyl ketone, diisopropyl ketone, di-tert-butyl ketone 및 5종의 용매들은 Ald-

rich 특급시약 및 일제 특급시약을 정제하지 않고 그대로 사용하였다. 각각의 시료들은 부피% 농도로 조제하였으며, 모세판(I.D. 1.1~1.2 mm, wall 0.2± 0.02 mm, length 75 mm)에 넣어 양끝을 용봉한 후 실험하였다.

SPEX 1403 0.85 m Double Spectrometer와 열전 기적으로 냉각되어져 약 ~40 ℃로 유지되는 RCA C31034 PMT(photomultiplier tube) 검출기를 386 PC에 인터페이싱하여 DM3000R 프로그램으로 라만스펙트럼을 얻었다. INNOVA 90-5 Ar⁺ laser의 514.5 nm 빛을 시료에 조사하였으며, 이때 laser power는 광원에서 약 50 mW에 고정시켰다. 단색화장치의 입구 슬릿 및 출구 슬릿 나비는 각각 400 µm로 하였으며, integration time 0.3초마다 0.2 cm⁻¹색스캔하였다.

결과 및 고찰

순수한 케톤에 대한 각각의 Raman 스펙트럼을

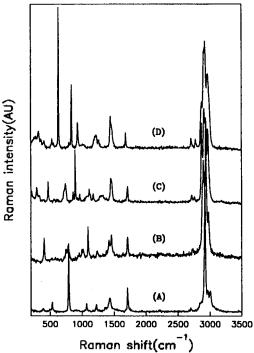


Fig. 1. Raman spectra of ketones; (A) dimethyl ketone, (B) diethyl ketone, (C) diisopropyl ketone, (D) di-tert-butyl ketone.

Fig. 1에 나타내었다. Fig. 1에서 카르보닐 신축진동 피크는 약 1700 cm⁻¹ 부근의 피크로서 자세한 각각 의 vC=O 파수는 유발효과(inductive factor(σ*)) 및 입체효과⁸(steric factor(E_s))와 함께 Table 1에 나타 내었다. Dimethyl ketone에서 di-tert-butyl ketone 까지의 계열에서, 알킬기의 유발효과와 입체인자 그 리고 카르보닐기의 염기도는 증가하며, 그리고 알킬 기의 steric factor가 중가함에 따라 카르보닐기와 용매분자 사이의 분자간 거리가 증가한다. 또한 용 질-용질 분자간의 카르보닐기 사이의 거리도 입체 장애가 클수록 중가한다. 용질 분자의 카르보닐기와 용매 수소원자 사이의 분자간 수소결합의 경우, 수 소결합의 세기는 적어도 4개의 인자, 즉 카르보닐 기의 염기도, 용매 수소원자의 산도, dialkyl group의 입체인자, 그리고 용매 분자에서 분자간 수소결합과 는 직접적으로 관련이 없는 원자나 기의 입체인자에 영향을 받는다. Dimethyl ketone을 제외하면, 다른 세 가지 dialkyl ketone에 대한 νC=O 파수는 σ*와 E,의 값이 중가함에 따라 감소한다. Fig. 2와 같이 케톤은 두 가지 공명 구조를 가진다. 알킬기의 유 발인자가 중가할수록 (2)번 구조에 있는 탄소원자의 (+) 전하는 안정화되며, 그 결과 vC=O 파수는 감 소한다. 왜 dimethyl ketone이 이러한 계열에서 번

Table 1. A comparison of the carbonyl stretching frequencies forpure ketone vs. inductive and steric factors

Ketone	νC=0 (cm ⁻¹)	Σσ*	ΣEs	$\frac{\Sigma \sigma^* \cdot \Sigma E_s}{(\times 10^{-2})}$
Dimethyl	1708.8	0	0	0
Diethyl	1711.2	-0.20	-0.14	2.8
Diisopropyl	1710.4	-0.38	-0.94	35.7
Di-t-butyl	1684.8	-0.60	-3.08	184.8

 $\Sigma \sigma^*$ is the summation of the electron release values for the alkyl group. ΣE_s is the summation of the steric substituent constant for the alkyl group($\Sigma \sigma^*$ and ΣE_s ; ref. (8).

$$\begin{array}{cccc}
R & & & & R & - & \\
R & & & & & C & - & \\
R & & & & & & R
\end{array}$$

Fig. 2. Two resonance structures of ketone.

Table 2. Bond lengths(Å) and bond angles(degrees) for ketone

		Dimethyl	Diethyl	Diiso- propyl	
1. rC=0	AM1	1.2353	1.2340	1.2362	1.2386
	PM3	1.2165	1.2148	1.2150	1.2171
2. rC-R	AM1	1.4952	1.5040	1.5161	1.5288
	PM3	1.5049	1.5165	1.5323	1.5502
3. ∠R-C-R	AM1	115.46	114.18	119.28	123.63
	PM3	115.49	113.86	117.55	123.51

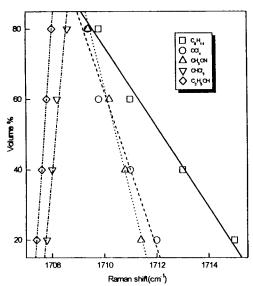


Fig. 3. A plot of vC = O for dimethyl ketone vs. concentration in various solvent.

어나는 지는 확실하지 않다. 다만 Nyquist가 다른 세 가지 dialkyl ketone에서는 vC=O이 alkyl기의 vC-C과 카플링을 해서 기대했던 것보다 더 높은 파수에서 vC=O이 발생했을 수도 있다는 견해를 제시했다.⁷

Table 2는 MOPAC 프로그램(version 6.00)을 사용하여 계산한 각각의 채론에 대한 결합 길이 및 결합 각을 나타낸 것이다. Table 1에서 σ^* 와 E,의 값이 중가함에 따라 계산된 결합길이 rC=0, rC-R 그리고 결합각 $\angle R-C-R$ 값은 dimethyl ketone을 제외하고 전반적으로 증가하였다. AM1 $^{\circ}$ 과 PM3 10 방법 중, PM3 방법으로 계산된 rC=0의 결합길이는 관찰된 vC=0 파수의 크기와 반비례하고 실험결과

Table 3. The ν C=O frequencies for dimethyl ketone in various solvents

	Volume %				
Solvent	20	40	60	80	
	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	
1. Hexane	1715.0	1713.0	1711.0	1709.8	
2. Carbon tetrachloride	1712.0	1711.0	1709.8	1709.4	
3. Acetonitrile	1711.4	1710.8	1710.2	1709.4	
4. Chloroform	1707.8	1708.0	1708.2	1708.6	
5. Ethyl alcohol	1707.4	1707.6	1707.8	1708.0	

의 파수 이동 경향성과 일치함을 보여준다.

Fig. 3는 다양한 용매에서 dimethyl ketone의 부 피% 변화에 따른 vC=O 파수 이동을 나타낸 것이다. 비극성 용매인 C₆H₁₄과 CCl₄에서는 케톤의 부피%가 20~80% 증가함에 따라 vC=O은 각각 5.2와 2.6 cm-1 낮은 파수에서 관찰되었다. 용질의 부피%를 증가시켰을 때, 어떤 한 용질 분자의 주위에는 용매 분자의 수는 감소하고 상대적으로 용질 분자의 수는 증가한다. 따라서 용질-용매 분자간 상호작용 보다 용질-용질 분자간 상호작용 가능성이 중가할 것이다. 비극성 용매에서는, 용질의 농도가 낮을 경우, 각각의 용매 분자는 용질 분자 사이의 쌍극자-쌍극자 상호 작용에 장애물이 된다. 그 결과 용질 분자의 카르보닐 가는 쌍극자-쌍극자 상호작용이 가능할 때보다 더 많은 이중 결합의 성격을 지니게 되므로 vC=O은 높은 파수에서 관찰된다. 극성 용매 중에서 수소결 합을 할 수 있는 용매인 CHCl3과 C2H5OH에서는 케톤의 부피%가 20%에서 80%로 증가함에 따라 vC=O은 각각 0.8 cm⁻¹와 0.6 cm⁻¹ 높은 파수에서 관찰되었으나, 농도 60% 중가에 1 cm⁻¹ 미만의 중 가를 나타내었다. 극성 용매에서, 용질 분자의 카르 보닐기는 용매 분자의 수소 원자와 수소결합을 형 성하여 이중 결합의 성격이 감소되며 20% 농도의 케톤의 vC=O가 알콜 용매에서는 1707.4 cm⁻¹로 비극성 hexane 용매의 80% 캐톤의 vC=O 1709.8 cm-1보다 더 낮은 파수에서 나타났다. 용질의 농 도가 증가할수록 용매 분자와 용질 분자 사이에 수 소결합의 형성과 용질-용질 분자들 사이의 쌍극자-쌍극자 상호작용이 경쟁을 한다. 그러므로, 비극성 용매보다는 낮은 파수에서 vC=O가 관측되지만 농 도 중가에 대한 vC=O 파수 중가는 매우 작게 된다.

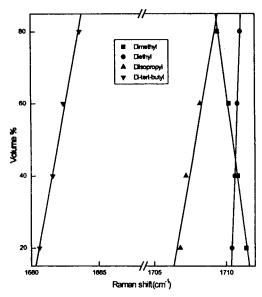


Fig. 4. A plot of vC=O for ketone vs. concentration in acetonitrile.

Fig. 4는 극성 용매인 아세토니트릴에서 케톤의 부피% 변화에 따른 vC=O 파수 아동을 나타낸 것 이다. 아세토니트릴 용매에서 dimethyl ketone은 다른 세 가지 캐톤과 비교해 볼 때 반대의 경향성을 보여주고 있다. 즉 dimethyl ketone의 농도가 중가할 때 vC=O은 낮은 파수에서 관찰된다. Dimethyl ketone에서만 반대의 경향성을 보이는 원인은 용매 분자와 용질 분자의 크기에서 기인하는 상호작용 정도의 차이로 설명할 수 있다. Dimethyl ketone의 경우는 methyl기의 작은 size로 인해 다른 세 가지 케톤의 경우보다 용질 분자의 카르보닐기 사이의 분자간 상호작용이 용이하다. 아세토니트릴 용매 분 자의 니트릴기도 용질 분자의 카르보닐기와 쌍극자-쌍극자 상호작용이 가능하다. 그러나 카르보닐기의 더 큰 전기음성도 차(vC=O: 1.0 vs. C=N: 0.5)로 인해 용질 분자의 vC=O기는 용매 분자의 C≡N기 보다 주위에 존재하는 다른 용질 분자의 vC=O기 와의 쌍극자-쌍극자 상호작용을 선호할 것이다. 따 라서 dimethyl ketone의 경우는 아세토니트릴 용매 분자가 비극성 용매와 같은 역할을 하여 케론의 부 피%가 증가함에 따라 vC=O은 낮은 파수에서 관 찰된다. 반면에 다른 세 가지 케톤의 경우는 dialkyl기의 부피가 크기 때문에 각각의 용질 분자는

Fig. 5. A plot of vC=O for (a) diethyl ketone (b) diisopropyl ketone and (c) di-tert-butyl ketone vs, its concentration in various solvent.

서로 적당한 거리를 두고 떨어져 있다. 아세토니트릴용매 분자의 부피가 크지 않기 때문에 아세토니트릴용매 분자는 용절 분자 사이에 들어가 용질 분자의 카르보닐기와 쌍극자-쌍극자 상호작용을 할 수 있을 것이다. 따라서 용매의 농도가 증가할수록 나머지세 가지 dialkyl ketone의 vC=O은 낮은 파수에서 관찰된다. Fig. 5는 다양한 용매에서 diethyl ketone, diisopropyl ketone과 di-tert-butyl ketone의 부피% 변화에 따른 vC=O 파수 이동을 나타낸 것이다. 비극성 용매에서는 채톤의 부피%가 증가함에 따라 vC=O은 낮은 파수에서 관찰되었으며, 극성용매에서는 높은 파수에서 관찰되었다.

Fig. 6은 CHCl₃/CCl₄ 혼합용매의 부피% 변화에 따른 20 부피% 채톤의 ν C=0 파수 이동을 나타낸 것이다. CHCl₃의 부피%가 중가하면 두 가지 인자, 즉 용매계의 국성과 카르보닐기와 CHCl₃의 수소 원자 사이의 분자간 수소결합 정도가 증가하여 ν C=0에 영향을 미친다. 이러한 원인으로 4가지 케톤

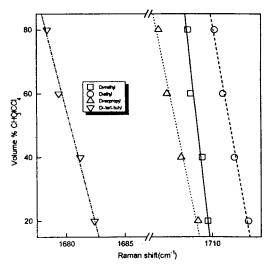


Fig. 6. A plot of ν C=O for 20 volume 20% ketone in CHCl₃ and/or CCl₄ solution vs. the volume % CHCl₃/CCl₄.

모두 CHCl₃의 부피%를 증가시켰을 때 vC=O은 낮은 파수에서 관찰되었다. 4가지 종류의 dialkyl ketone은 dimethyl, diethyl, diisopropyl, 그리고 ditert-butyl기의 순서대로 카르보닐기에 더 많은 전자들을 제공한다. 그 결과 di-tert-butyl ketone의 카르보닐기는 다른 3가지 dialkyl ketone의 카르보닐기보다 더 큰 염기성을 때게 되어 용액에서 더 많은 용질/용매 상호착용을 할 수 있다. 따라서 CHCl₃의 부피%를 증가시켰을 때, di-tert-butyl ketone의 vC=O 파수는 다른 3가지 dialkyl ketone의 vC=O 파수보다 더 많이 감소하였다.

결 론

수소결합, 쌍국자-쌍국자 상호작용, 그리고 입체 효과는 용액속에서 케톤의 카르보닐 신축진동, vC =O, 파수를 결정하는 모든 인자들이다. vC=O 파 수는 케톤의 농도 변화에 의해 영향을 받았다. 케톤의 부피%가 증가함에 따라, vC=O은 비극성 용매인 hexane과 carbon tetrachloride에서는 낮은 파수쪽으로 이동되어 관찰되었고, 극성 용매 중에서 수소 결합을 할 수 있는 용매인 chloroform과 ethyl alcohol에서는 케론의 농도가 60% 중가하여도 0.8, 0.6 cm⁻¹씩만 높은 파수쪽으로 이동되어 관찰되었다. 강한 극성용매에서는 케톤의 농도가 중가할수록 용매-용질 사이의 수소결합하는 분자들보다 용질-용질 사이의 vC=이기들끼리의 쌍극자-쌍극자 결합하는 분자수가 중가하기 때문이라 생각할 수 있다. 극성용매인 acetonitrile에서는 두 가지 경향성을 나타내었다. 즉 케톤의 부피%를 중가시켰을 때 dimethyl ketone의 vC=O은 낮은 파수쪽으로 이동되었으며, 나머지 세 가지 dialkyl ketone은 높은 파수쪽으로 이동되었다.

일정 농도에서 케톤의 vC=O 파수는 CHCl₂/CCl₄ 혼합용매의 부피% 변화에 의해 또한 영향을 받았다. CHCl₃의 부피%가 증가함에 따라, 20 부피% 케톤의 vC=O은 낮은 파수쪽으로 이동되어 관찰되었다. 또한 CHCl₃의 부피%를 증가시켰을 때, di-tert-butyl ketone의 vC=O 파수는 다른 3가지 dialkyl ketone의 vC=O 파수보다 더 많이 감소하였다.

인 용 문 현

- Lee, M. S.; Lee, I. J.; Shu, S. H. J. Kor. Chem. Soc. 1993, 37, 987.
- Lee, M. S.; Jung, Y. M.; Shu, S. H. J. Kor. Chem. Soc. 1994, 38, 179.
- Nyquist, R. A.; Putzig, C. L.; Yurga, L. Appl. Spectrosc. 1989, 43, 1049.
- 4. Nyquist, R. A. Appl. Spectrosc. 1986, 40, 79.
- 5. Nyquist, R. A. Appl. Spectrosc. 1989, 43, 1053.
- 6. Nyquist, R. A. Appl. Spectrosc. 1990, 44, 426.
- 7. Nyquist, R. A. Appl. Spectrosc. 1990, 44, 433.
- Nyquist, C. L. Putzig; Yurga, L. Appl. Spectrosc. 1989, 43, 983.
- 9. Dewar, M. J. S. J. Am. Chem. Soc. 1985, 107, 3902.
- 10. Stewart, J. J. P. J. Comp. Chem. 1989, 10, 209.