아미드기룔 가진 소수성 비고리 폴리에테르의 합성
 건양대학교 자연과학연구소 화학과
 †가노시바대학디 응용공학부
 ${ }^{\ddagger}$ 강 원대학교 자연가학대학 화학와
 "한국표춘파학연구원 무기분석부
 "충남대학교 자연바한대하 화하과

(1996. 9. 2 접수)

Syntheses of Lipophilic Acyclic Polyethers Bearing Amide End-Groups

Jong Seung Kim*, Akira Ohki ${ }^{\dagger}$, Moon Hwan Cho ${ }^{\ddagger}$, III Yong Yu, Sang Chul Lee ${ }^{\ddagger}$. Joung Hae Lee ${ }^{\text {\% }}$, and Nam Sook Cho ${ }^{\text {T}}$ Department of Chemistry, Konyang University, Nonsan 320-800, Korea
${ }^{\dagger}$ Department of Applied Chemistry \& Chemical Engineering, Faculty of Engineering, Kagoshima University, Kagoshima 890, Japan
${ }^{\ddagger}$ Department of Chemistry. Kangwon National University, Chuncheon 200-701. Korea
${ }^{5}$ Korea Research Institute of Standards and Science, Taejon 305-606. Korea
=Department of Chemistry, Chungnam National University, Taejon 305-764. Korea

(Received September 2, 1996)

Recently. much attention has been paid to the selective separation of alkali metal, alkaline earth metal, and heavy metal ions from industrial waste.
$1:=$ Especially, investigations of metal ion complexation with potential neutral chelating functions in the side arms have been well studied. ${ }^{3}$ Many natural ionophores such as valinomycin for potassium ion,' monensin for sodium ion, ${ }^{5}$ nonactin for ammonium ion ${ }^{\text {i }}$ and calcimycin for calcium ion ${ }^{\text {i }}$ have been well known. Potentiometric selectivities of solvent polymeric membrane electrodes containing structural derivatives of dibenzo-16-crown-5-oxyacetamides for sodium ion have been determined. ${ }^{\times}$
Previously, we prepared lipophilic acyclic polyether bearing amide end-groups ($\mathbf{1}$ and $\mathbf{2}$) and reported that complexation abilities of the ligand by ISE (Ion Selective Electrode) system are found to show an excellent selectivity for Pb^{2-} over $\mathrm{Cu}^{2 \cdot}{ }^{4}$ Especially. the value of $\log \mathrm{K}_{\mathrm{ln}_{1}, \mathrm{cin}}{ }^{\text {pin }}$ for compound 1

was -4.0 which is the best value so far reported with respect to the potentiometric selectivity of Pb^{2} over Cu^{2}. ${ }^{\text {. }}$ To further probe the selectivity of Pb ion complexation selectivity and efficiency over other heavy metal ions based upon the structural variations such as alkyl chain length, the length of ethereal linkage and lipophilic chains of N, N-dialkyl group, syntheses of new ionophores $5 \sim 18$ have been proposed. In these viewpoints. now, we report that synthetic procedures for a series of novel fourteen lipophilic acyclic polyether
diamides such as 1,2 -bis $\left[2-\left(2^{\prime}-N, N\right.\right.$-dialkylarbarmoylmethoxy)phenoxy]ethane 5-8. 1,2-bis[2-(2'$N . N$-dialkylcarbamoylpentadecyloxy)phenoxyj ethane $9 \sim 12,1,5$-bis $\left[2-\left(2^{\prime}-N, N\right.\right.$-dialkylcarbamoyl methoxy)phenoxy]-3-oxapentane $13 \sim 15$, 1,5-bis $\left[2-\left(2^{\prime}-N . N\right.\right.$ dialkylearbamoylpentadecyloxy')phe-noxy]-3-oxapentane $16 \sim 18$.

RESUITS AND DISCUSSION

It was reported that reaction of sym-(hydroxy) (propyl)dibenzo-16-crown-5 with potassium hydride in tetrahydrofuran then with N, N-dipentyl-2chloroacetamide as an alkylating agent gave a sym-(propyl)dibenzo-16-crown-5-oxyacetamide with a quantitative yield. ${ }^{10}$ However, a number of attempts for syntheses of acyclic polyether diamides by reported procedures ${ }^{10}$ including the synthetic procedures for reaction of 1,5 -bis(2 -hydrox-yphenoxy)- 3 -oxapentane with N, N-dipentyl-2-chloroacetamide as a direct coupling method ${ }^{9}$ were found to be unsuccessful. Also. several attempts by modified procedures for synthesis of compound 5 in which ethylene glycol ethereal group connects two benzene rings- reaction of 1,2 -(2-hydroxyphenoxylethane with N, N-dialkyl-2-chloroacetamide in the presence of potassium hydride as a base- are found to be unsuccessful. On the other hand, we have found that a chlorination of dicarboxylic acid 3 with oxalyl chloride in the presence of catalytic amount of pyridine followed by treatment with diethylamine provided the non-ionizable polyether diamide 5 with a quantitative yield.

For structural variation focused on the length of ethereal linkage as well as on the lipophilicity of alkyl chains on the nitrogen atoms, reactions of acyclic polyether dicarboxylic acids with oxaly] chloride in the presence of catalytic amount of pyridine were found to give a quantitative yield as depicted in Scheme 1. No reaction undergoes without catalytic amount of pyridine and with other base such as triethylamine. Without any further purification, reaction of acid chlorides with $\mathrm{N}, \mathrm{N}-$ diethyl, N, N-dipropyl, N, N-dibutyl, N, N-dipentyl amine in the presence of triethylamine as a base followed by filtration through column chromatog-

Compound	\underline{n}	\underline{R}	$\underline{\text { R }}$
5	0	HI	Ithyl
6	0	H	Propyl
7	0	H	Butyl
8	0	H	Pentyl
9	0	$\mathrm{C}_{14} \mathrm{I}_{29}$	Ethyl
10	0	$\mathrm{C}_{14} \mathrm{II}_{29}$	Propyl
11	0	$\mathrm{C}_{14} \mathrm{H}_{29}$	Butyl
12	0	$\mathrm{C}_{14} \mathrm{H}_{29}$	Pentyl
13	1	H	Ethyl
14	1	H	Propyl
15	1	H	Butyl
16	1	$\mathrm{C}_{14} \mathrm{H}_{29}$	Ethyl
17	1	$\mathrm{C}_{14} \mathrm{H}_{29}$	Propyl
18	1	$\mathrm{C}_{14} \mathrm{H}_{29}$	Bulyl

raphy provided the desired products with excellent yields (see Table 1).
Synthetic route for precursors 3 and 4 is described in Scheme 2 . The starting material, 1,2-(2-hydroxyphenoxy)ethane, was synthesized by three steps from catechol. ${ }^{11}$ Subsequently, coupling reactions of 1.2-\{2-hydroxyphenoxy)ethane with bromoacetic acid or 2-bromohexadecanoic acid in the presence of sodium hydride as a base gave a white solid with a quantitative yield in both cases (compound 3 and 4). In similar manner to reported procedures, ${ }^{12}$ when 1,2-(2-hydroxyphenoxy)ethane reacts with bromoacetic acid to make compound 3 , the reaction mixture stirred for 10 hours at room temperature. However, for compound 4, no reaction underwent without heating at reflux temperature. It is probably attributed to a steric hindrance when phenoxide ion as a nucleophile attacks the secondary carbon at which bulky tetradecyl group is substituted.
In conclusion, syntheses of a series of novel acyclic polyethers bearing amide end-groups were

Compound	Yield (\%) ${ }^{\text {b }}$	${ }^{\text {'H }} \mathrm{H}$ NMR Spectra (CDCl_{3}), ppm	IR Spectrat ${ }^{\text {cm }}{ }^{\text {1/ }}$	Molecular formular	Combustion analysis Cald./Found C H	
5	88	$\begin{aligned} & 0.91(\mathrm{t}, 12 \mathrm{H}), 3.37(\mathrm{q} .8 \mathrm{H}), 4.40(\mathrm{~s}, 4 \mathrm{H}), 4.72(\mathrm{~s} .4 \mathrm{H}) . \\ & 6.91 \sim 7.10(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1648(C=0), 1497,1451,1254 . \\ & 1204,1061,1107(C-O) \end{aligned}$	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\begin{aligned} & 58.16 \\ & 58.10 \end{aligned}$	$\begin{aligned} & 6.82 \\ & 6.74 \end{aligned}$
6	92	$0.86(\mathrm{t}, 12 \mathrm{H}), 1.10 \sim 1.50(\mathrm{~m}, 8 \mathrm{H}), 3.31(\mathrm{t} .8 \mathrm{H}), 4.58(\mathrm{~s}$, $4 \mathrm{H}), 4.71(\mathrm{~s}, 4 \mathrm{H}), 6.91 \sim 7.11(\mathrm{~m}, 8 \mathrm{H})$	$\begin{aligned} & 1651(\mathrm{C}=0), 1497,1455,1262 . \\ & 1057.1108(\mathrm{C}-\mathrm{O}) \end{aligned}$	$\mathrm{C}_{31} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{6}$	$\begin{aligned} & 68.18 \\ & 68.10 \end{aligned}$	$\begin{aligned} & 8.33 \\ & 8.30 \end{aligned}$
7	95	$0.85(\mathrm{t}, 12 \mathrm{H}), 1.12 \sim 1.81(\mathrm{~m}, 16 \mathrm{H}) .3 .29(\mathrm{t}, 8 \mathrm{H}), 4.40$ (s, 4 H), 4.70 (s, 4 H). $6.91 \sim 7.12$ ($\mathrm{m}, 8 \mathrm{H}$)	$\begin{aligned} & 1650(\mathrm{C}=0), 1495,1455,1214, \\ & 1260,1060.1118(\mathrm{C}-0) \end{aligned}$	$\mathrm{C}_{4} \mathrm{H}_{3 i} \mathrm{~N}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}$	$\begin{aligned} & 69.86 \\ & 69.74 \end{aligned}$	$\begin{aligned} & 8.90 \\ & 8.81 \end{aligned}$
8	92	$\begin{aligned} & 0.86(\mathrm{t} .12 \mathrm{H}), 1.13 \sim 1.80(\mathrm{~m} .24 \mathrm{H}), 3.30(\mathrm{t}, 8 \mathrm{H}), 4.39 \\ & (\mathrm{~s}, 4 \mathrm{H}), 4.72(\mathrm{~s}, 4 \mathrm{H}), 6.91 \sim 7.10(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1651(\mathrm{C}=0), 1497,1450,1210, \\ & 1258,1060,1107(\mathrm{C}-0) \end{aligned}$	$\mathrm{C}_{\mathrm{p} \times \mathrm{H}} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 69.30 \\ & 69.21 \end{aligned}$	$\begin{aligned} & 9.42 \\ & 9.38 \end{aligned}$
9	88	$0.70 \sim 1.67(\mathrm{~m}, 70 \mathrm{H}) .1 .72 \sim 2.20(\mathrm{~m}, 4 \mathrm{H}), 3.37$ (q. 8 H), $4.36(\mathrm{~s}, 4 \mathrm{H}), 4.78(\mathrm{t}, 2 \mathrm{H}), 6.86 \sim 7.72(\mathrm{~m}, 8 \mathrm{H})$	1651 ($\mathrm{C}=0$) , 1497, 1455. 1215. 1262, 1061, 1119 (C-O)	$\mathrm{C}_{51} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{6}$	$\begin{aligned} & 74.95 \\ & 74.75 \end{aligned}$	$\begin{aligned} & 10.74 \\ & 1071 \end{aligned}$
10	93	$0.78 \sim 1.09(\mathrm{~m}, 18 \mathrm{H}), 1.10 \sim 1.73$ (br s, 60 H$) .1 .71 \sim 2$. $20(\mathrm{~m}, 4 \mathrm{H}), 3.17 \sim 3.48(\mathrm{~m}, 8 \mathrm{H}), 4.36(\mathrm{~s} .4 \mathrm{H}), 4.77(\mathrm{t}$, $2 \mathrm{H}), 6.80 \sim 7.71(\mathrm{~m}, 8 \mathrm{H})$	1641 ($\mathrm{C}=\mathrm{O}$), 1497, 1455, 1215 . 1260, 1058, 1118 (C-O)	$\mathrm{C}_{5 \times} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 74.91 \\ & 74.88 \end{aligned}$	$\begin{aligned} & 10.87 \\ & 10.64 \end{aligned}$
11	87	$0.80 \sim 1.11(\mathrm{~m}, 18 \mathrm{H}), 1.12 \sim 1.71$ (br s. 68 H), $1.72 \sim 2$. $24(\mathrm{~m} .4 \mathrm{H}), 3.17 \sim 3.48(\mathrm{~m}, 8 \mathrm{H}), 4.35(\mathrm{~s}, 4 \mathrm{H}), 4.78(\mathrm{t}$, $2 \mathrm{H}), 6.88 \sim 7.23(\mathrm{~m}, 8 \mathrm{H})$	$\begin{aligned} & 1647(\mathrm{C}=0), 1497,1455,1215 . \\ & 1268,1060,1121(\mathrm{C}-\mathrm{O}) \end{aligned}$	$\mathrm{C}_{62} \mathrm{H}_{124} \mathrm{~N}_{2} \mathrm{O}_{6}$	$\begin{aligned} & 76.18 \\ & 76.08 \end{aligned}$	$\begin{aligned} & 11.14 \\ & 11.22 \end{aligned}$
12	67	$0.80 \sim 1.07$ (m, 18 H), $1.10 \sim 1.71$ (br s. 76 H), $1.72 \sim 2$. 22 (m, 4 H), $3.17 \sim 3.50$ (m, 8 H), 4.35 ($\mathrm{s}, 4 \mathrm{H}$), 4.78 (t, $2 \mathrm{H}), 6.85 \sim 7.71(\mathrm{~m}, 8 \mathrm{H})$	1651 ($\mathrm{C}=0$) , 1497, 1455, 1215, 1262, 1061, 1119 (C-O) $1651(\mathrm{C}=0), 1497,1450,1230$,	$\begin{aligned} & \mathrm{C}_{6 \times \mathrm{ib}} \mathrm{H}_{116} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ & \mathrm{C}_{36} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{~N}_{\mathrm{i}} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$	$\begin{aligned} & 71.44 \\ & 71.30 \end{aligned}$	$\begin{aligned} & 10.47 \\ & 10.43 \end{aligned}$
13	88	$1.10 \sim 1.35(2 \mathrm{t}, 12 \mathrm{H}), 3.43(\mathrm{q} .8 \mathrm{H}), 3.90 \sim 3.97(\mathrm{~m}, 4$ H), $4.15 \sim 4.23(\mathrm{~m}, 4 \mathrm{H}), 4.69(\mathrm{~s}, 4 \mathrm{H}), 6.92(\mathrm{~s}, 8 \mathrm{H})$	1061, 1120 (C-O)		$\begin{aligned} & 59.49 \\ & 59.31 \end{aligned}$	$\begin{aligned} & 7.67 \\ & 7.66 \end{aligned}$
14	89	$0.79 \sim 0.90(2 \mathrm{t}, 12 \mathrm{H}), 1.20 \sim 1.80(\mathrm{~m}, 24 \mathrm{H}), 3.25(\mathrm{t}, 8$ H), $3.88 \sim 4.20(\mathrm{~m}, 4 \mathrm{H}), 4.15 \sim 4.25(\mathrm{~m}, 4 \mathrm{H}), 4.71(\mathrm{~s}, 4$ H), $6.91(\mathrm{~s}, 8 \mathrm{H})$	$\begin{aligned} & 1647(\mathrm{C}=0), 1497,1455,1262 \\ & 1061,1111(\mathrm{C}-\mathrm{O}) \end{aligned}$	$\mathrm{C}_{j k} \mathrm{H}_{88} \mathrm{~N}_{2} \mathrm{O}-$	$\begin{aligned} & 67.10 \\ & 67.19 \end{aligned}$	$\begin{aligned} & 8.45 \\ & 8.44 \end{aligned}$
15	90	$0.79 \sim 1.10(2 \mathrm{t}, 12 \mathrm{H}), 1.11 \sim 1.80(\mathrm{~m}, 32 \mathrm{H}), 3.22(\mathrm{t} .8$ H), $3.88 \sim 3.97(\mathrm{~m}, 4 \mathrm{H}), 4.15 \sim 4.23(\mathrm{~m}, 4 \mathrm{H}), 4.70(\mathrm{~s}, 4$ H), $6.92(\mathrm{~s}, 8 \mathrm{H})$	$\begin{aligned} & 1650(\mathrm{C}=0), 1497,1453,1211, \\ & 1257,1060,1118(\mathrm{C}-\mathrm{O}) \end{aligned}$	$\mathrm{C}_{56} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}$	$\begin{aligned} & 68.76 \\ & 68.61 \end{aligned}$	$\begin{aligned} & 8.98 \\ & 8.74 \end{aligned}$
16	94	$0.87 \sim 1.91$ ($2 \mathrm{t}, 18 \mathrm{H}$), $1.18 \sim 1.70$ (br s, 52 H), 1.69~2. $03(\mathrm{~m}, 4 \mathrm{H}), 3.19 \sim 3.27(\mathrm{~m}, 8 \mathrm{H}), 3.77(\mathrm{t}, 4 \mathrm{H}), 4.73(\mathrm{t}, 4$ H), 4.78 (t. 2 H$), 6.89 \sim 7.27(\mathrm{~m}, 8 \mathrm{H})$	$\begin{aligned} & 1644(C=O), 1488,1453,1215, \\ & 1260,1060,1120(C-O) \end{aligned}$	$\mathrm{C}_{36} \mathrm{H}_{\text {gr }} \mathrm{N}_{2} \mathrm{O}$ \%	$\begin{aligned} & 73.80 \\ & 73.50 \end{aligned}$	$\begin{aligned} & 10.84 \\ & 10.65 \end{aligned}$
17	93	$0.81 \sim 0.90(\mathrm{~m}, 18 \mathrm{H}), 1.16 \sim 1.67$ (br s, 60 H), $1.68 \sim 2$. $00(\mathrm{~m}, 4 \mathrm{H}), 3.19 \sim 3.37(\mathrm{~m}, 8 \mathrm{H}), 3.88(\mathrm{t}, 4 \mathrm{H}), 4.10(\mathrm{t}, 4$ H), $4.78(\mathrm{t}, 2 \mathrm{H}), 6.88 \sim 7.26(\mathrm{~m}, 8 \mathrm{H})$	$1650(\mathrm{C}=0), 1496,1455,1214$, 1262, 1061, 1119 (C-O)	$\mathrm{C}_{611} \mathrm{H}_{14 \times} \mathrm{N}_{2} \mathrm{O}_{2} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\begin{aligned} & 71.92 \\ & 71.85 \end{aligned}$	$\begin{aligned} & 10.59 \\ & 10.50 \end{aligned}$
18	89	$0.80 \sim 0.88(\mathrm{~m}, 18 \mathrm{H}), 1.16 \sim 1.67$ (br s, 68 H), $1.73 \sim 2$. $08(\mathrm{~m}, 4 \mathrm{H}), 3.20 \sim 3.40(\mathrm{~m} .8 \mathrm{H}), 3.91(\mathrm{t}, 4 \mathrm{H}), 4.16(\mathrm{t}, 4$ H), 4.78 (t, 2 H), $6.85 \sim 7.24(\mathrm{~m}, 8 \mathrm{H})$	1651 ($\mathrm{C}=0$), 1497, 1455, 1215, 1262. 1060,1118 (C-O)	$\mathrm{C}_{64} \mathrm{H}_{114} \mathrm{~N}_{2} \mathrm{O}_{7}$	$\begin{aligned} & 75.11 \\ & 75.08 \end{aligned}$	$\begin{aligned} & 11.23 \\ & 11.21 \end{aligned}$

${ }^{\text {a }}$ All compounds were isolated as oils. In some cases the oil crystallized after long standing. ${ }^{\text {T Total }}$ percent yields from starting material. dicarboxylic acid to final product. Deposited from methylene chloride.

Schour 2.
successfuily accomplished with quantiative yields. To further investigate the influence of number and positioning of polyether oxygen with lipophilic acyclic polyether diamides, syntheses of those in which both lipophilic alkyl chain and the number of ethylene glycol units are varied and their complexation studies with transition metal ions are in progress and the results will be reported.

EXPERIMENTAL

Melting points were taken by the use of a MelTemp of Fisher-Johns melting point apparatus without any correction. IR spectra were obtained with a Perkin-Elmer 1600 Series FT-IR on potassium bromide pellet and are recorded in reciprocal centimeters. 'H NMR spectra were recorded with an AF- 300 spectrometer with the chemical shifts (δ) reported downfield from the internal standard, tetramethylsilane. Elemental analysis was performed by Vario EL of Elemental Analyzer in Korea Basic Science Institute in Seoul. Korea.

Unless specified otherwise, reagent grade reactants and solvents were obtained from chemical suppliers and used as received. Dry solvents were prepared as follows: tetrahydrofuran was freshly distilled from sodium metal ribbon or chunks; benzene and pentane were stored over sodium ribbon, respectively; dichloromethane was freshly distilled from lithium aluminum hydride. 1,5-Bis[2-(carboxymethyloxy)phenoxy]-3-oxapentane (3) ${ }^{13}$ is known compound. The synthetic reagents 1,2-(2hydroxyphenoxy)ethane ${ }^{11}$ and 1,5-bis(2-hydroxy-phenoxy)-3-oxapentane ${ }^{12,13}$ were prepared by the reported methods.

General procedure for the reaction of acyclic polyether dicarboxylic acid with oxalyl chloride followed by reaction with N, N-dialkylamine (Compou-
nds 5~18). All of these reactions were carried out under nitrogen atmosphere. A solution of 4.90 mmole of diacid, 49.0 mmole of oxalyl chloride. and 1 drop of pyridine in 100 mL of dry benzene was refluxed for 10 hours. The solvent and excess oxalyl chloride were removed in vacuo. To this crude product was added 50 mL of dichloromethane and 50 mL of water. Organic layer was separated, washed with 1 N hydromboric acid solution ($2 \times 50 \mathrm{~mL}$) followed by drying over anhydrous magnesium sulfate. Removal of the solvent in vacuo gave corresponding acyclic pollyether dicarboxylic acid chlorides in quantitative yield as a yellowish oil. With structural identification of spectroscopic evidences the obtained proxluct was used in next reaction step without any further purification. Under nitrogen, to a turbid solution of this acid chloride and 11.3 mmole of triethylamine in 50 mL of dry benzene was added dropwise 11.3 mmole of N, N-dialkylamine during a period of 30 \min at 10 C . Upon the complete addition, the reaction mixture was stirred for additional 3 hours at room temperature. Stirring for 1 hour at room temperature gave a transparent brown solution. Water (100 mL) was poured and organic layer was separated. The benzene layer was dried over anhydrous magnesium sulfate followed by filtration through column chromatography of the residue on silica gel with ethyl acetate as an eluent provided N, N-dialkyl acyclic polyether diamides $5 \sim 18$ as a colorless oil. (see detail yield, spectral data, and combustion analysis in Table 1).

1,2-Bis[2-(2'-carboxypentadecyloxy)phenoxy] ethane (4). After removal of the protecting mineral oil from sodium hydride (50% dispersion in mineral oil, $6.00 \mathrm{~g}, 0.34$ mole) by washing with n-pentane under nitrogen, a solution of 1,2-(2-hydroxyphenoxy) ethane ($10.0 \mathrm{~g}, 45.0 \mathrm{mmole}$) in 150 mL of dry tetrahydrofuran was added. The mixture was stirred for 2 hours at room temperature. To this reaction mixture was added dropwise 2bromohexadecanoic acid ($12.6 \mathrm{~g}, 90.0$ mmole) in 20 mL of dry tetrahydrofuran at room temperature during a period of 2 hours. Upon the complete addition, the reaction mixture was refluxed for 10
bours. In the case for synthesis of compound 3 for which reation of diphenol with bromoacetic atid is carriced oul. reflux was not necessary to complete the cation. After careful addition of water to (his emainn mixture in an ice bath to destroy the uaroited excess sodium hydride. which gas. a thomeneneous solution, tetrahydrofuran was temoved in pacuo leaving an aqueous mixture. To this basic aqueous bayer was carefully added conc: hydrochloric acid for aqueous solution (1) be pHll. Crude product was extracted by use of methylene chloride ($3 \times 50 \mathrm{~mL}$). The organic layer was washed with brine ($3 \times 50 \mathrm{~mL}$), dried over anhydrous magnesium sulfate, and evaporated in vacto to give a crude solid. Recrystallization from 100 ml of diethyl ether provided a white solid. $28.0 \mathrm{~g}(85 \%) . \mathrm{mp} 1(08 \sim 110 \mathrm{C}$: IR (KBr pellet):
 $\delta 0.77 \sim 1.00$ (t. 6 H): $1.10 \sim 2.00$ (br s. 48 H) : 4.36 $(\mathrm{s}, 4 \mathrm{H})=4.57$ ($1,2 \mathrm{e} \mathrm{i}), 6.8, \sim 7.17$ (m, 8H). Anal, calcd. for $\mathrm{C}_{13} \mathrm{H}_{;} \mathrm{O}_{3}$: C, 72.88 : H. 10.24. Found: C 72.67: H, 10.21

Acknowledgement. This research was fully supported by Grant for Institute-University Collabolative Project from the Korea Research Institute of Standards and Science, Taejon, Korea.

EFERENCES

1. Cram. 1). J.: Trueblood, N. K. In Host Guest Complex Chemistry. Macrocycles. Synthesis, Structures, and Applications; Vötle, F.: Weber. E., Eds.: Spri-nger-Verlag: New York, U. S. A., 1985: Chapter
2.
3. Dietrich. B.; Viout, P.; Lehn, J.-M. In Macrocyclic Chemistry: VCH: New York, U. S. A., 1993.
4. Vötle. F.: Weber. E. Angew. Chem. Int. Ed. Engl. 1979, 18, 753.
5. Ammann. W.: Anker, P.; Metzer, E.: Oesch, U.: Simon, W. In Ion Measuroment in Physiology and Medicine; Kesseler, M.; Hoper, J.: Harrison, D. K., Eds.; Springer-Verlag: Berlin, Heidelberg, New York, 'Tokyo, 1988. (b) Osswald. H. F.; Asper. R.: Dimai, W.: Simen. W. Clin. Chem. 1976 35, 39.
6. Kraig, R. P.: Nicholson, Ch. Science 1976. 194, 725.
7. (a) Thani-Wyss, U.: Morf. W. E.: Lienemann, P.; Stefanac. Z.: Mostert, l.; Döig, R.; Dohner, R. E.; and Simon. W. Mikrochim. Acta 1981, 1, 331.
8. Pressman. B. C. Ann. Rev. Biochim. 1976. 45. 501.
9. (a) Ohki, A.; Lu, J.-P.; Bartsch, R. A. Anal. Chem. 1994. 66. 651. (b) Ohki, A.; Lu, J.-P.; Huang, X.: Bartsch, R. A. Anal. Chem. 1994, 66, 4332.
10. Kim, J. S.: Ohki, A.: Cho, N. S.i Yu. l. Y.; Hayashita T.; Maeda, S. Bull. Kor. Chem. Sore 1996. 17. 953.
11. Kasprzyk. S. P.i Bartsch. R. A. J. Heterocyclic Chem. 1993, 30, 119.
12. Hoe, G. S. In Ph. D. Dissertation: Department of Chemistry and Biochemistry. Texas Tech University, 1983, p 122.
13. Oepen, G. J.; Dix, P.; Vötle. F. Liehigs Ann. Chem. 1978, 1592.
14. Kim, J. S.; Cho, M. H.; Lee, S. C.; Lee, Y.-I.; Sim, W.; Cho, N. S. Microchem. J. 1996 53, in press.
