Journal of the Korean Chemical Society 1996, Vol. 40, No. 11 Printed in the Republic of Korea

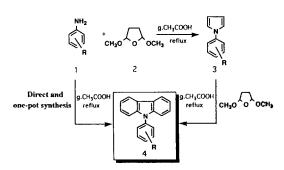
1-Arylpyrrole로부터 9-Arylcarbazole의 합성

鄭大一*・金倫瑛・李龍均・朴朵미・金寅植[↑]、成大東・金東賢[‡]

동아대학교 화학과 ¹동아대학교 부속병원 [‡]한국전력공사 에너지·환경고등연구소 (1996. 8. 14 접수)

Synthesis of 9-arylcarbazoles from 1-arylpyrroles

Dai-Il Jung*, Yun-Young Kim, Yong-Gyun Lee, You-Mi Park,


In-Shik Kim[†], Dae-Dong Sung, and Dong-Hyun Kim[‡] Department of Chemistry, Dong-A University, Pusan 604-714, Korea [†]Dong-A University Hospital, Pusan 604-714, Korea [‡]Korea Electric Power Research Institute, Taejon 103-16, Korea

(Received August 14, 1996)

Carbazoles were discovered in anthracene oil of coal tar, and are the parent structure of a number of heterocyclic compounds. Much attention has been paid to carbazole derivatives recently as the materials for semiconductors' and photoconductive compounds.² Many conventional methods for synthesis of carbazoles were known such as Grabe-Ulimann methods³ and the Tauber methods.⁴

In the course of the investigation for the synthesis of pyrrole derivatives 3,⁵⁺⁷ we have found the formation of 9-arylcarbazoles 4 under refluxing glacial acetic acid. Thus we report the results here.

1-Arylpyrroles were prepared by the previously

Scheme 1. Synthesis of 9-arylcarbazoles.

published procedure.

Generally, synthetic methods of 1-arylpyrroles 3 from amines 1 and 2 have been known for a long time.⁸⁻¹⁰ 1-Arylpyrroles 3 were obtained in quantitative yields by the general method (*Table* 1). The effect of organic dicarboxylic acids on the synthesis of 3 was investigated (*Table* 2). Among organic dicarboxylic acids, adipic acid gave the highest yield of 3i (see *Table* 2, Entry 1). The yield of 3i was the lowest when acetonedicarboxylic acid

Table 1. Physical data of 1-arylpyrroles 3

	R	Yield(%)	mp (°C)	lit." mp(°C)
a	p-OCH ₃	98	108~109	108
b	p −CH ₃	97	78~79	
c	$p - NO_2$	88	$180 \sim 181^7$	$180 \sim 181$
d	<i>p</i> −F	96	$56 \sim 60^{6}$	
e	p-C1	96	42~43 ^{**}	
ſ	¢-Br	95	$94 \sim 95^{6.7}$	$94 \sim 95$
g	3,5-diCl	94	$61 \sim 62^{6}$	
h	2,6-diCl	94	$79 \sim 80^{6}$	
i	Н	98	58~59 ^{6,2}	$58 \sim 59$
j	$m - NO_2$	87	$81 \sim 82^7$	81~82
k	<i>m</i> -Br	93	64~65 ⁶⁵	

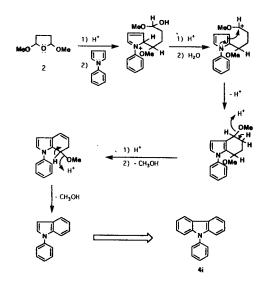
"Isolated yield.

Table 2. The yields of 1-phenylpyrrole 3i depending on the dicarboxylic acids

Entry	Organic dicarboxylic acid	Reflux (min)	Yield(%)" 3i
1	Adipic acid	75	87
2	Tartaric acid	60	22
3	Acetonedicarboxylic acid	40	$2(48)^{b}$
4	3-(carboxymethylthio) propionic acid	240	42
5	2-ketoglutaric acid	30	8
6	Bis(carboxymethyl) trithiocarbonate	30	23
7	Trans-3-hexenedionic acid	720	46

"Isolated yield. "N-Phenylnortropinone."

Table 3. Physical data of 9-arylcarbazoles 4


	Pyrrole	Reflux(h)	Yield(%)"	mp (Ċ)
a	p-OCH ₃	15	54	149~150
b	<i>p</i> −CH ₃	4	34	ħ
c	<i>p</i> −NO ₂	28	30	ь
đ	p-F	12	22	130~131
e	p-CI	16	30	$157 \sim 158$
f	¢-Br	18	40	159
g	3,5-diCl	9	23	<i>b</i>
b	2,6-diCl	11	26	48~50
i	Н	19	55	94~96
j	$m - NO_2$	29	24	119~121
k	<i>m</i> -Br	18	23	4

"Isolated yield. "Liquid.

was used (*Table* 2, Entry 3), but *N*-phenylnortropinone was formed as the major product in 48% yield.

9-Arylcarbazoles 4 were formed by treatment of 1-arylpyrroles 3 with 2 in glacial acetic acid. The yields of 4's were summerized depending on the substituent(\mathbf{R}) in *Table* 3.

A representative example of synthesis 4 is as the follow. The mixture of 3i (5 mmol) and 2 (10 mmol) was refluxed in glacial acetic acid under N₂ gas for 19 h to afford 4i in a 55% yield. Identification of 9-phenylcarbazole by ¹H NMR spectrum (CDCl₃, Me₄Si) showed 13 proton peaks corresponding to carbazolyl group and phenyl group at δ 7.25-8.18. Mass spectrum showed molecular ion peaks at m/e 243 (100%).

Scheme 2. Proposed mechanism for the formation of 9-phenylcarbazole.

	Table 4.	One-pot	synthesis	of	9-arvl	carbazoles 4
--	----------	---------	-----------	----	--------	--------------

	R	Reflux(h)	Yield(%)"
a	p-OCH ₃	12	30
с	⊅ −NO ₂	20	23
ì	Н	10	47
j	$m - NO_2$	32	20
k	<i>m</i> -Br	18	15

"Isolated yield. "Liquid.

But the synthesis of 9-alkylcarbazoles from the corresponding 1-alkylpyrroles was not successful.

In order to investigate the mechanism, the products in the reaction mixture were monitored with time by gas chromatography. 1-Arylindoles were detected by gas chromatography, which were comfirmed with the authentic samples.

A possible mechanism for the formation of 4 may involve the cleavage reaction of furan ring by glacial acetic acid and subsequent formation of intermediates X and Y (*Scheme* 2).

9-arylcarbazoles 4 can also be prepared by onepot reactions of the aromatic amines 1 and 2 in glacial acetic acid under N_2 gas. The results are listed in *Table* 4. However, the yields from the one-pot reaction are much lower than the reaction from 1-arylpyrroles.

EXPERIMENTAL SECTION

Melting points were determined on a Búchi 510 capillary melting point apparatus and uncorrected. Infrared spectra were recorded on a Perkin-Elmer 683 spectro-photometer. NMR spectra were recorded on a Varian XL-300 or Brüker AC 200 FT-NMR spectrometer in CDCl₃ containing Me₄Si as an internal reference. Mass spectra were obtained by using JEOL JMS DX 303 or HP 5892 Mass Spectrometer.

A typical procedure for the preparation of 9phenylcarbazole 4i in glacial acetic acid. A mixture of 3i (0.72 g, 5 mmol) and 2 (1.32 g, 10 mmol) in glacial acetic acid was refluxed for 19 h. Removal of the solvent under reduced pressure followed by flash column chromatography on a silica-gel (*n*-hexane : ethyl acetate = 10 : 1, v/v) gave the desired 9-phenylcarbazole 4i as a solid (0.67 g, 55%); mp 94~96 C: IR (KBr) 3050 (aromatic C-H) 1590, 1240, 760 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) & 7.25~ 8.18 (m, 13H, phenyl and carbazolyl group); ¹³C NMR (CDCl₃, 50.32 MHz) & 129.9, 127.5, 125.9, 120.3, 119.9 109.8; Mass (m/e) 243(M), 166, 140, 77.

A typical procedure for the preparation of 9-(4'methoxyphenyl) carbazole 4a by direct and one-pot reaction in glacial acetic acid. A mixture of 1a (1.85 g, 15 mmol) and 2 (6.20 g, 45 mmol) in glacial acetic acid was refluxed for 12 h. The solvent was removed under aspirator pressure and the remaining sticky oil was separated by flash column chromatography on a silica gel (*n*-bexane). Yield 1.23 g (30%); IR (KBr) 3070 (aromatic C-H) 2950, 1600, 1210, 1120, 800 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 3.66 (s, 3H, CH₃) 7.25~8.18 (m, 12H, phenyl and carbazolyl group); Mass (m/e) 273(M⁻¹), 258, 242, 166.

Physical data of 1-arylpyrroles. $1a^{1}H$ NMR (CDCl₃, 200 MHz) δ 3.83 (s, 3H, CH₃), 6.32 (t, 2H), 6.92~6.99 (m, 4H), 7.28~7.33 (m, 2H); Mass (m/e) 173(M⁻¹). $1b^{-1}H$ NMR (CDCl₃, 200 MHz) 2.34~2.46 (t, 3H, CH₃), 6.41~6.44 (t, 2H), 7.16~7.18 (t, 2H), 7.49~7.54 (m, 2H), 8.28~8.33 (m, 2H); Mass (m/e) 157(M⁻¹). $1c^{-1}H$ NMR (CDCl₃, 200 MHz) δ 6.41~ 6.44 (t, 2H), 7.16~7.54 (m, 2H), 8.28~8.33 (m, 2H); Mass (m/e) 157(M⁻¹). $1c^{-1}H$ NMR (CDCl₃, 200 MHz) δ 6.41~ 6.44 (t, 2H), 7.16~7.18 (t, 2H), 8.28~8.33 (m, 2H); Mass (m/e) 157(M⁻¹). $1c^{-1}H$ NMR (CDCl₃, 200 MHz) δ 6.41~ 6.44 (t, 2H), 7.16~7.18 (t, 2H), 8.28~8.33 (m, 2H); Mass (m/e) 157(M⁻¹). $1c^{-1}H$ NMR (CDCl₃, 200 MHz) δ 6.41~ 6.44 (t, 2H), 7.16~7.18 (t, 2H), 7.49~7.54 (m, 2H), 8.28~8.33 (m, 2H). 1g IR (KBr) 3080s, 3120s (aro-

matic C-H), 1570s, 1590s (aromatic C=C) cm⁻¹; ¹H NMR (CDCl₃, 60 MHz) δ 6.35~6.41 (m, 2H, pyrrole C₃H, C₄H), 6.98~7.10 (m, 2H, pyrrole C₂H, C₅H), 7.15~7.41 (m, 3H, phenyl group); UV(EtOH) λ_{max} 262.2 nm. **1h** IR (KBr) 3080s, 3120s (aromatic C-H), 1560s (aromatic C=C) cm⁻¹; ⁻¹H NMR (CDCl₃, 60 MHz) δ 6.35~6.51 (m, 2H, pyrrole C₃H, C₄H), 6.72~6.88 (m, 2H, pyrrole C₂H, C₅H), 7.26~ 7.65 (m, 3H, phenyl group); UV(EtOH) λ_{max} 240 nm. **1i** ⁻¹H NMR (CDCl₃, 200 MHz) δ 6.33~6.35 (t, 2H), 7.08~7.10 (t, 2H), 7.23~7.24 (m, 1H), 7.39~ 7.42 (m, 4H); Mass (m/e) 143(M⁻¹). **1j** Mass (m/e) **188(M⁻¹)**, **1k** Mass (m/e) 222(M⁻¹).

Physical data of 9-arylcarbazoles. 4a IR (KBr) 3070~2980w (aromatic C-H), 2950~2800w (aliphatic C-H), $1600 \sim 1400s$ (aromatic C=C), 1120s(C-O), 1210s (C-N), 800~650w (=CH, aromatic OOP) cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 3.83 (s, 3H, CH₃), 7.02~8.19 (m, 12H, phenyl and carbazolyl group); Mass (m/e): 274 (M + 1, 25), 273 (M⁺, 100), 258, 242, 166. 4b IR (neat) 3060~2980w (aromatic C-H), 2950~2800w (aliphatic C-H), 1590 s (aromatic C=C), 1240s (C-N), $800 \sim 650w$ (=CH, aromatic OOP) cm 1; 1H NMR (CDCl₃ 300 MHz) δ 2.34~2.46 (t, 3H, CH₃), 6.31~7.67 (m, 12H, phenyl and carbazolyl group); Mass (m/e): 257(M⁺), 242, 242, 166. 4c IR (neat) 3050~2900w (aromatic C-H), 1550s, 1390s (NO₄), 1500~1450s (aromatic C=C), 1230s (C-N), 760~720w (=CH, aromatic OOP) cm ⁻¹; ⁻¹H NMR (CDCl₃, 300 MHz) δ 6.34~ 7.68 (m. 12H, phenyl and carbazolyl group); Mass (m/e) 288(M⁺), 242, 166, 140, 46, 30. 4d IR (neat) 3050~2900w (aromatic C-H), 1500~1450s (aromatic C=C), 1300s (aryl-F), 1210s (C-N), 760 \sim 720w (= CH, aromatic OOP) cm⁻¹; ¹H NMR (CDCl_a, 300 MHz) δ 6.34~7.68 (m, 12H, phenyl and carbazolyl group); Mass (m/e), 262 (M⁺+1, 18), 261 (M⁺, 100), 242, 166, 140, 75. 4e IR (KBr) 3050~ 2950w (aromatic C-H), 1500~1450s (aromatic C =C), 1230s (C-N), 1120s (aryl-Cl), 760~710w $(=CH, \text{ aromatic OOP}) \text{ cm}^{-1}$; ¹H NMR (CDCl₃, 200 MHz) & 7.26~8.16 (m, 12H, phenyl and carbazolyl group); Mass (m/e) 279 (M⁺+2, 36), 277 (M⁺, 100), 242, 166, 140, 76, 14f IR (KBr) 3030~3010w (aromatic C-H), $1500 \sim 1450s$ (aromatic C=C), 1230s (C-N), 1010s (aryl-Br), 760~710s (=CH, aromatic OOP) cm⁻¹; ¹H NMR (CDCl₃ 200 MHz) δ 7.25~8.19 (m, 12H, phenyl and carbazolyl group); ¹³C NMR (CDCl₃, 50.32 MHz) & 133.13, 128.75, 126.10, 123.52, 120.41, 120.24, 109.57; Mass (m/e) 323 $(M^+ + 2, 108)$, 321 $(M^+, 100)$, 241, 166, 140, 76. 4g IR (neat) 3100~3000w (aromatic C-H), $1580 \sim 1550s$ (aromatic C=C), 1220s (C-N), 1130s (ary|-Cl), 750~740s (=CH, aromatic OOP) cm⁻¹: 'H NMR (CDCl₃ 200 MHz) δ 6.68~8.26 (m. 11H, phenyl and carbazolyl group); Mass (m/e): 315 $(M^+ + 4, 10), 313 (M^+ + 2, 69), 311 (M^+, 100), 276$ 242, 166, 75, 62, 14h IR (KBr) 3150~3000w (aromatic C-H), 1570~1550s (aromatic C=C), 1220s (C-N), 1130m (aryl-Cl), 750~740s (=CH, aromatic OOP) cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 6.73~7.71 (m. 11H, phenyl and carbazolyl group); Mass (m/e) 315 (M⁺+4, 10), 313 (M⁺+2, 60), 311 (M⁺, 100), 276, 242, 166, 75, 62, 4i IR (KBr) 3050~ 2950w (aromatic C-H), 1590s (aromatic C=C), 1240s (C-N), 760~700s (= CH aromatic OOP) cm⁻¹: 'H NMR (CDCl₃, 200 MHz) δ 7.25~8.18 (m, 13H, phenyl and carbazolyl group); ¹³C NMR (CDCl₃, 50.32 MHz) & 129.89, 127.45, 125.91, 120.30, 119.89, 109.76; Mass (m/e): 244 (M + 1, 23), 243 (M . 100), 166, 140, 77. 4j IR (neat) 3050-2900w (aromatic C-H), 1550s, 1390s (NO₂), 1500~1450s (aromatic C=C), 1230s (C-N), 760~720w (=CH, aromatic OOP) cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 6.34~7.68 (m, 12H, phenyl and carbazolyl group); Mass (m/e): 288, 242, 166, 140, 46, 30. 4k IR (neat) 3030~3010w (aromatic C-H), 1500~1450s (aromatic C=C), 1215s (C-N), 1005s (aryl-Br), 770~ 710s (= CH, aromatic OOP) cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) & 7.25~8.20 (m, 12H, phenyl and carbazolyl group); Mass (m/e): 323 (M⁺+2, 103), 321 (M⁺, 100), 241, 166, 140, 76.

Acknowledgement. The authors are grateful for the financial support from Basic Science Research Institute and Dong-A University.

REFERENCE

- (a) Block, H.; Cowd, M. A.; Walker, S. M. Polymer. 1977, 18, 781. (b) Hermann, A. M.; Rembaum, A. J. Polym. Sci., Polym. Symp. 1967, 17, 107. (c) Kanega, H. H.; Shirota, Y.; Mikawa, H. J. Chem. Soc., Chem. Commun. 1984, 158. (d) Murray, R. W. Annu. Rev. Mater. Sci. 1984, 14, 145.
- (a) Hisch, R.; Pohl, R. W. Z. Phys. **1933**, 87, 78.
 (b) Hogel, H. J. Phys. Chem. **1965**, 69, 755. (c) Lardon, M.; Dorller, E. L.; Weigl, J. W. Mol. Crystallot. **1967**, 2, 241. (d) Gill, W. D. J. Appl. Phys. **1972**, 43, 5033. (e) Schaffert, R. M. IBM J. Res. Dev. **1971**, 15, 75.
- (a) Graeke, O. H.; Ullmann, F. Ann. 1896, 291, 16. (b) Graeke, O. H.; Ullmann, F. Ann. 1947, 937.
- 4. Tauber, E. Ber. 1891, 24, 200.
- Kashima, C.; Hibi, S.; Marugama, T.; Omote, Y. Tetrahedron Lett. 1986, 27, 2131.
- Jung, D. I.; Kim, Y. Y.; Yoo, B. G.; Lee, Y. G.; Choi, S. K. J. Korean Chem. Soc. 1993, 37, 982.
- Jung, D. I.; Kim, Y. Y.; Yoo, B. G.; Lee, Y. G.; Choi, S. K. Bull. Korean Chem. Soc. 1994, 15, 168.
- Elming, N.; Clauson-Kass, N. Acta. Chem. Scand. 1952, 6, 867.
- Chiang, Y.; Hinman, R. L.; Teodoropulos, S.; Wipple, E. B. Tetrahedron 1967, 23, 745.
- 10. Josey, A. D. Org. Syn. Coll. 1973; Vol. V. pp 716.
- 11. Candy, C. F.; Jones, R. A.; Wright, P. H. J. Chem. Soc. 1970, 2563.
- N-Phenylnortropinone. ¹H NMR (CDCl₃, 200 MHz) δ 4.32 (s, 2H), 2.45~2.34 (dd, 2H), 2.03~1.
 82 (m, 4H), 1.49~1.42 (m, 2H), 7.35~6.75 (m, aromatic 5H); Mass (m/e) 201(M⁺), 143, 104, 77, 51.