저온상압에서 합성된 Na,TPA-ZSM-5의 결정화에 관한 Solid State $^{27}Al$$^{29}Si$ MAS NMR 분광학적 고찰

Solid State $^{27}Al$, $^{29}Si$ MAS NMR Spectroscopic Studies on Crystallization of ZSM-5 Synthesized at Low Temperature and Atomospheric Pressure

  • Yun, Young Ja (Department of Chemistry, SoongSil University) ;
  • Ha, Jae Mok (National Institute of Technology and Quality)
  • 발행 : 19961000

초록

저온상압법에 의해 Si/Al의 비가 100정도되는 ZSM-5를 합성하였으며 시간 경과에 따른 결정화과정을 $^{27}Al$$^{29}Si$ MAS NMR spectea 및 FT-IR로 고찰하였다. 저온상압 하에서 합성한 결과 초기 반응물질 및 성분비에 따라 화학적 이동은 기종의 연구와는 다른 경향을 보였으나 반응이 진행됨에 따라 최종 생성물의 화학적 이동은 전형적이 ZSM-5 영역에서 나타나고 있음을 확인하였다. 그리고 국부결함은 소성에 의해 제거되었으며 최종생성물의 XRD 및 SEM의 결과에서도 합성된 물질이 ZSM-5임을 확인하였다.

Using low temperature and atmospheric pressure method, we synthesized Na, TPA-ZSM-5 with Si/Al ratio of about 100. We employed 27Al and 29Si MAS NMR spectroscopy and FT-IR to investigate the crystallization process as a function of time. The chemical shift depends on the initial composition of reactants and changes during the course of synthesis different from those reported by others earlier. However, the chemical shift of our final product showed in the range of typical ZSM-5. And the defect site was removed by the calcine. From XRD and SEM data, the formation of ZSM-5 was also confirmed.

키워드

참고문헌

  1. J. C. B. Faraday 1 v.3 Chao, K. J.;Tasi, T. S.;Chen, M. S.;Wang, I.
  2. J. Chem. Soc. v.62 Barrer, R. M.;Denny, P. J.
  3. Hydrothermal Chemistry of Zeolite Barrer, R. M.
  4. Zeolite v.2 Derouane, E. G.;Nagy, J. B.;Gabelica, Z.;Blom, N.
  5. E. P. v.21 Rollmann, L. D.;Valyocsik, E. W.
  6. E. P. v.21 Rollmann, L. D.;Valyocsik, E. W.
  7. U. S. Pat. 3-702-886
  8. Nature(London) v.272 Kokatailo, G. T.;Lawton, S. L.;Olison, D. H.;Meier, W. M.
  9. Appl. Catal. v.58 Suzuki, K.;Kiyozumi, Y.;Matsuzaki, K.;Shin, S.
  10. U .S. Pat. 4-579-994 Kiyozumi, Y.;Suzuki, K.;Shin, S.;Okado, H.;Noguchi, K.
  11. J. Chem. Soc., Faraday Trans. 1 v.82 Fegan, S. G.;Lowe, B. M.
  12. European Pat. 0-129-239
  13. J. Phys. Chem. v.87 Kentgens, A. P.;Scholle, K. F. M. G. J.;Veeman, W. S.
  14. Chem. Phys. Lett. v.84 Mueller, D.;Hoebbel, D.;Gessner, W.
  15. J. Phys. Chem. v.86 Fyfe, C. A.;Gobbi, G. C.;Hartman, J. S.;Klinowski, J.;Thomas, J. M.
  16. React. Kinet. Catal. Lett. v.18 Mastikhin, V. M.;Krivoruchko, O. P.;Zolotovski, B. P.;Buyanov, R. A.
  17. J. Chem. Res. Araya, A.;Lowe, B. M.
  18. J. Phys. Chem. v.88 Scholle, K. F. M. G. J.;Veeman, W. S.;Freken, P.;van der Velden, G. P. M.
  19. High Resolution Solide State NMR of Silicates and Zeolites v.1 Engelhardt, G.;Michel, D.
  20. Zeolite v.4 Boxltoorn, G.;Kortbeek, A. G. T. G.;Hays, G. R.;Alim, N. C. M.
  21. Appl. Cata. v.17 Scholle, K. F. M. G. J.;Veeman, W. S.;Freken, P.;van der Velden, G. P. M.
  22. J. Chem. Tech. Biotechnol. v.44 Shukla, D. B.;Pandya, V. P.
  23. Zolite v.4 Jansen, J. C.;Vander Gaag, F. T.;Vekkum, H.
  24. Molecular Sive Principles of Synthesis and Identification Szostak
  25. J. Chem. Soc., Chem. Commun. Coudurier, G.;Naccache, C.;Vedrine, J. C.