DOI QR코드

DOI QR Code

Hydrogen-Atom and Charge Transfer Reactions within Acetylene/Methanol and Ethylene/Methanol Heteroclusters

  • Published : 1996.10.20

Abstract

Reactions that proceed within mixed acetylene-methanol and ethylene-methanol cluster ions were studied using an electron-impact time-of-flight mass spectrometer. When acetylene and methanol seeded in helium are expanded and ionized by electron impact, the ion abundance ratio, [CH3OH+]/[CH2OH+] shows a propensity to increase as the acetylene/methanol mixing ratio increases, indicating that the initially ionized acetylene ion transfers its charge to adjacent methanol molecules within the clusters. Investigations on the relative cluster ion intensity distributions of [CH3OH2+]/[CH3OH+] and [(CH3OH)2H+]/[CH3OH·CH2OH+] under various experimental conditions suggest that hydrogen-atom abstraction reaction of acetylene molecule with CH3OH ion is responsible for the effective formation of CH2OH ion. In ethylene/methanol clusters, the intensity ratio of [CH3OH2]/[CH3OH] increases linearly as the relative concentration of methanol decreases. The prominent ion intensities of (CH3OH)mH over (CH3OH)m-1CH2OH ions (m=1, 2, and 3) at all mixing ratios are also interpreted as a consequence of hydrogen atom transfer reaction between C2H4 and CH3OH to produce the protonated methanol cluster ions.

Keywords

References

  1. Acc. Chem. Res. v.19 Castleman, Jr., A. W.
  2. Gaseous Ion Chemistry and Mass Spectrometry Castleman, Jr., A. W.;Mark, T. D.
  3. Int. J. Mass Spectrom. Ion Processes v.135 Jung, K. W.;Choi, C. J.;Kim, Y. S.;Jung K.-H.;Kim, D.
  4. Bull. Korean Chem. Soc. v.13 Jung, K. W.;Choi, S.-S.;Jung, K.-H.
  5. J. Phys. Chem. v.92 Onuchic, J. N.;Wolynes, P. G.
  6. J. Chem. Phys. v.84 Pettitt, B. M.;Rossky, P. J.
  7. J. Mass Spectrom. Ion Phys. v.35 Cook, K. D.;Jones, G. D.;Taylor, J. W.
  8. J. Phys. Chem. v.93 Morgan, S.;Castleman, Jr., A. W.
  9. J. Chem. Phys. v.94 Vaidynanthan, G.;Coolbaugh, M. T.;Peifer, W. R.;Garvey, J. F.
  10. J. Phys. Chem. v.96 El-Shall, M. S.;Marks, C.;Sieck, L. W.;Meot-Ner, M.
  11. J. Am. Chem. Soc. v.104 Stace, A. J.;Shukla, A. K.
  12. J. Chem. Phys. v.92 Buck, U.;Gu, X. J.;Lauenstein, Ch.;Rudolph, A.
  13. J. Am. Chem. Soc. v.114 Shin, D. N.;Jung, K. W.;Jung, K.-H.
  14. Org. Mass Spectrom. v.28 Choi, C. J.;Jun, K. W.;Kang, W. K.;Youn, D. Y.;Jung, K.-H.;Kim, D.
  15. J. Mass Spectrom. v.30 Lee, S. Y.;Shin, D. N.;Cho, S. G.;Jung, K.-H.;Jung, K. W.
  16. Rev. Sci. Instrum. v.62 Jung, K. W.;Choi, S. S.;Jung, K.-H.
  17. J. Phys. Chem. Ref. Data no.SUP.1 Lias, S. G.;Bartmess, J. E.;Liebman, J. F.;Holmes, J. L.;Levin, R. D.;Mallard, W. G.
  18. Org. Mass Spectrom. v.22 Harrison, A. G.
  19. Chem. Phys. Lett. v.166 Tzeng, W. B.;Wei, S.;Castleman, Jr., A. W.
  20. Intl. J. Mass Spectrom. Ion Processes v.100 Iraqi, M.;Petrank, A.;Peres, M.;Lifshitz, C.