Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions(I) - Limits of Linear Viscoelastic Response and Nonlinear Behavior with Large Amplitude Oscillatory Shear Deformation -

폴리에틸렌옥사이드 수용액의 유변학적 특성 평가(I) -대진폭 진동 전단 변형하에서의 선형 점탄성 응답한계 및 비선형 거동-

  • 송기원 (부산대학교 공과대학 섬유공학과) ;
  • 장갑식 (부산대학교 공과대학 섬유공학과) ;
  • 김철범 ((주)LG화학 테크센타) ;
  • 이장우 (부산대학교 공과대학 고분자공학과) ;
  • 백종승 (한국표준과학연구원 역학연구부)
  • Published : 1996.12.01

Abstract

Using a Rheometrics Fluids Spectrometer, the nonlinear viscoelastic behavior of aquaous poly(ethylene oxide)(PEO) solutions with large amplitude oscillatory shear deformation has been investigated by analyzing the strain amplitude dependence of the storage modulus and dynamic viscosity. In this paper, the strain limits of linear viscoelastic response were determined and the effect of angular frequency on these values was examined. The behavior of the storage modulus and dynamic viscosity with increasing strain amplitude waIn also compared in nonlinear viscoelastic region. Further, the nonlinear behavior was interpreted by introducing the nonlinear viscoelastic functions derived from the Fourier expansion of the stress wave. Finally, the nonlinear behavior indices were defined and the effect of angular frequency on these values was discussed. Main results obtained from this study can be summarized as follows : (1) The storage medulus has a much stronger dependence on the strain amplitude and begins to show a nonlinear behavior at a smaller strain amplitude range than does the dynamic viscosity. (2) The strain limits of linear response of the storage modulus and dynamic viscosity are ${\gamma}$$_{EL}$ = 40~50% and ${\gamma}$$_{VL}$ = 80~100%, respectively. These values increase with decreasing angular frequency at frequency range lower than the inverse of the characteristic time. (3) The nonlinear behavior takes place at strain amplitude range larger than the limits of linear response, where the higher harmonic terms of the nonlinear viscoelastic functions show an obvious effect. (4) The nonlinear behavior indices have the maximum values at a specific angular frequency, and the elastic behavior shows more remarkable dependence on the angular frequency than does the viscous behavior.

Keywords

References

  1. Pogg. Ann. Phys. v.7 L. Boltzmann
  2. J. Appl. Phys v.25 W. Philippoff
  3. Trans. Soc. Rheol. v.10 W. Philippoff
  4. Chem. Eng. Sci. v.24 I. F. MacDonald;B. D. Marsh;E. Ashare
  5. J. Polym. Sci.: Polym. Phys. Ed. v.20 D. S. Pearson;W. E. Rochefort
  6. Rheol. Acta v.21 W. C. MacSporran;R. P. Spiers
  7. Rheol. Acta v.23 W. C. MacSporran;R. P. Spiers
  8. J. Polym. Sci. v.8 G. V. Vinogradov;Y. Yanovsky;A. I. Isayev
  9. Int'l. Chem. Eng. v.11 G. V. Vinogradov;Y. G. Yanovskii;A. I. Isaev
  10. Trans. Soc. Rheol. v.19 T. T. Tee;J. M. Dealy
  11. Trans. Soc. Rheol. v.14 S. Onogi;T. Masuda;T. Matsumoto
  12. Trans. Soc. Rheol. v.17 H. Komatsu;T. Mitsui;S. Onogi
  13. J. Soc. Rheol. Japan v.10 T. Kotaka;H. Watanabe
  14. Chem. Pharm. Bull. v.30 M. Kobayashi;S. Ishikawa;M. Samejima
  15. Trans. Soc. Rheol. v.16 L. H. Gross;B. Maxwell
  16. Polym. Eng. Sci. v.18 R. J. J. Jongschaap;K. H. Knapper;J. S. Lopulissa
  17. J. Non-Newt. Fluid Mech. v.3 G. Astarita;R. J. J. Jongschaap
  18. Trans. Soc. Rheol. v.16 H. C. Yen;L. V. McIntire
  19. Polym. Eng. Sci. v.27 S. N. Ganeriwala;C. A. Rotz
  20. J. Rheol. v.37 D. R. Gamota;A. S. Wineman;F. E. Filisko
  21. Trans. Soc. Rheol. v.7 B. Bernstein;E. A. Kearsley;L. J. Zapas
  22. Chem. Eng. Sci. v.23 R. B. Bird;P. J. Carreau
  23. J. Chem. Soc. Faraday Trans. Ⅱ v.74 M. Doi;S. F. Edwards
  24. J. Chem. Soc. Faraday Trans. Ⅱ v.75 M. Doi;S. F. Edwards
  25. J. Non-Newt. Fluid Mech. v.12 J. Mewis;M. M. Denn
  26. Rheol. Acta v.14 I. F. MacDonald
  27. J. Rheol. v.28 Y. H. Lin
  28. J. Rheol. v.36 A. J. Giacomin;J. G. Oakley
  29. J. Rheol. v.37 A. G. Giacomin;R. S. Jeyaseelan
  30. J. Rheol. v.29 Y. Isono;J. D. Ferry
  31. AIChE J. v.15 R. I. Tanner
  32. Rev. Mod. Phys. v.33 B. D. Coleman;W. Noll
  33. Fluid Mechanics(2nd Ed.) v.1 Dynamics of Polymeric Liquids R. B. Bird;R. C. Armstrong;O. Hassager
  34. J. Rheol. v.35 N. Orbey;J. M. Dealy
  35. Kinetic Theory(2nd Ed.) v.2 Dynamics of Polymeric Liquids R. B. Bird;C. F. Curtiss;R. C. Amstrong;O. Hassager
  36. Rheol. Acta v.20 K. Yasuda;R. C Armstrong;R. E. Cohen
  37. Arch. Rat. Mech. Anal. v.1 A. E. Green;R. S. Rivlin
  38. Arch. Rat. Mech. Anal. v.3 A. E. Green;R. S. Rivlin
  39. Arch. Rat. Mech. Anal. v.4 A. E. Green;R. S. Rivlin